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Abstract

Social media platforms are becoming increasingly important marketing chan-

nels, and recently these channels are becoming dominated by content that is

not textual, but visual in nature. In this paper, we explore the relationship

between the visual complexity of firm-generated imagery (FGI) and consumer

liking on social media. We use previously validated image mining methods,

to automatically extract interpretable visual complexity measures from im-

ages. We construct a set of six interpretable measures that are categorized

as either (1) feature complexity measures (i.e., unstructured pixel-level vari-

ation; color, luminance, and edges) or (2) design complexity measures (i.e.,

structured design-level variation; number of objects, irregularity of object

arrangement, and asymmetry of object arrangement). These measures and

their interpretability are validated using a human subject experiment. Sub-
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sequently, we relate these visual complexity measures to the number of likes.

The results show an inverted u-shape between feature complexity and con-

sumer liking and a regular u-shape relationship between design complexity

and consumer liking. In addition, we demonstrate that using the six indi-

vidual measures that constitute feature- and design complexity provides a

more nuanced view of the relationship between the unique aspects of visual

complexity and consumer liking of FGI on social media than observed in pre-

vious studies that used a more aggregated measure. Overall, the automated

framework presented in this paper opens up a wide range of possibilities for

studying the role of visual complexity in online content.

Keywords: Social Media, Visual Complexity, Deep Learning, Image

Analytics, Convolutional Neural Networks

1. Introduction

Social media platforms are becoming some of the main channels for achiev-

ing a variety of key marketing objectives, from creating awareness to facili-

tating sales (Batra and Keller, 2016; Kumar et al., 2013, 2016; Colicev et al.,

2018; Luo et al., 2013). More and more firms actively participate on so-

cial media; they create fan pages on various platforms and generate content

to improve their social media marketing strategies. However, 60% of the

content generated by brands is declared as “poor and irrelevant or it fails

to deliver” (Havas, 2017). As the amount of online firm-generated content

(FGC), such as Instagram posts or brand tweets, continues to increase and

the overall amount of content pushed to consumers explodes, it becomes more

and more challenging to attain and hold the consumer’s attention. To create
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content that is appealing to consumers requires insight in the popularity of

firm-generated posts.

Finding the drivers behind the liking of FGC will improve the under-

standing of consumer interests and behavior. Liking behavior has been shown

to have positive effects on brand evaluations (Beukeboom et al., 2015) and

it can cause positive change in customers’ offline behavior (Mochon et al.,

2017). In addition, Kumar et al. (2016) show that liking can further improve

brand evaluations and firm-generated content in general positively impacts

consumer spending and overall profitability. By effectively using FGC, mar-

keters can also positively influence their consumers’ purchase behavior (Goh

et al., 2013; Scholz et al., 2018). Finally, (Colicev et al., 2019) shows that

visual FGC helps to build an engaged brand following and that it has a

significant effect on the consideration and purchase intent of consumers

Although recent studies shed some light on the determinants of the liking

and engagement with textual content in social media (Berger and Milkman,

2012; De Vries et al., 2012; Hewett et al., 2016; Stephen et al., 2015), there

is very little research on the liking of predominantly visual content. This

is remarkable given the growth of visual social media on platforms such as

Instagram. It poses a new dimension to the challenges of the marketing man-

ager, whose key concern is to create content that stops the consumer when

scrolling through their social media content. Studies on how people perceive

scenes (i.e. information that can flow from a physical environment into a

perceptual system, such as images through the human eye) show that ob-

servers understand and comprehend the visual information of a scene within

100 milliseconds (Potter, 1976; Oliva, 2005). So, it is crucial that marketing
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managers create visual content that is likeable by the observer at the first

look. Therefore, there is a need for empirical investigation of what aspects

of visual content generate liking to help firms to be more effective with their

visuals on social media.

In the literature, mostly in the context of advertising, we see two oppos-

ing views on how to best attract attention to visual content; on the one hand

it is suggested to create simplicity (Aitchison, 2012; Book and Schick, 1997)

and on the other hand, there is an emphasis on complexity (Nelson, 1994;

Putrevu et al., 2004). Visual Complexity Theory (Attneave, 1954; Donderi,

2006) forms the basis of a more in-depth research in the debate between

simplicity and complexity and its effect on attitude towards offline advertise-

ments (Pieters et al., 2010). The authors show a positive as well as a negative

impact for different visual complexity measures. That is, higher visual com-

plexity in terms of basic perceptual features (“feature complexity”) decreases

consumers’ attitude towards the ad and higher visual complexity in terms of

design (“design complexity”) increases consumers’ attitude towards the ad.

A recent study by Shin et al. (2019), investigates the impact of different image

content features, including visual complexity, on social media engagement.

This study finds the exact opposite, where there is a positive relationship be-

tween engagement and pixel-level complexity (i.e. feature complexity) and a

negative relationship between engagement and object complexity (i.e. design

complexity).

Inspired by these studies, their contrasting views, the divide we observe

in the advertising literature and recent advances in computer science, we aim

to empirically explain the effect of visual complexity on the liking of FGI on
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Instagram. Based on previous findings, and the notion that visual complexity

is not a monolithic construct (Corchs et al., 2016; Nagle and Lavie, 2020), we

argue that: 1) the relationship between visual complexity and liking is most

likely non-linear of nature, as opposed to the linear effects found in previous

studies (Pieters et al., 2010; Shin et al., 2019). 2) By dividing the visual

complexity into several individual measures we can provide a holistic view

and a better understanding of the relationship between visual complexity

and consumer liking.

Our study makes several contributions. First, by expanding, automating,

validating and implementing the visual complexity framework as proposed by

Pieters et al. (2010), we improve current knowledge in the visual marketing

literature. We show that, when examining the components that constitute

visual complexity individually, there are non-linear relationships between the

different types visual complexity and consumer liking. It is optimal to stay

in the mid-levels of feature complexity, while choosing either end of the spec-

trum of design complexity works best.

Second, our methods for automatically extracting information from visual

content on social media create rich sources of information. Since our model

provides automated insights into what content is present in different images,

it provides brand managers with information on why pictures will be liked

by consumers. The image analysis framework that we present can also be

informative for future studies on imagery or studies that try to leverage

image information.1 In addition, we show that the individual aspects of

1The code for extracting the visual complexity measures and various control variables

is available at: https : //github.com/Gyys1992/IJRM visual complexity
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visual complexity influence consumer liking above and beyond a wide range

of content characteristics, such as photography attributes (Zhang et al., 2017;

Zhou et al., 2018), specific types of images (extracted using multiple pre-

trained convolutional neural networks), or faces.

Third, we contribute to the need for exploration of the impact of FGI

on social media using a visual complexity framework on a large-scale social

media dataset, (Hewett et al., 2016). Moreover, rather than stating that

particular individual images are popular, we build design and feature insights

about why those images are popular.

In the next section, we present our conceptual framework. After outlin-

ing the model, methodological approach and variable operationalization, we

validate our measures in an experiment and summarize the results. We con-

clude with the theoretical contributions of our research and the managerial

implications.

2. Conceptual Framework

Complexity of images has been studied extensively in different research

fields such as psychology, computer science and advertising. Visual complex-

ity has been defined in many different ways, and there is no standardized

measurement of visual complexity. Palumbo et al. (2014, p. 4) best sum-

marize visual complexity as follows: ”Visual complexity is broadly defined

as the level of detail or intricacy contained within an image (Snodgrass and

Vanderwart, 1980). It has been suggested that perceived complexity correlates

positively with the amount of variety in a picture (Heylighen, 1997) and that

it corresponds to the degree of difficulty people show when describing a visual
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stimulus (Heaps and Handel, 1999)”. In other words, complexity depends

on a variety of image features ranging from basic, unstructured variation to

semantic, structured variation.

Several studies have investigated ways of measuring visual complexity.

A popular method for determining the visual complexity of an image has

been to derive scores by asking participants to provide ratings of complexity

based on a number of scales (Bonin et al., 2003; Snodgrass and Vanderwart,

1980). Palumbo et al. (2014) identify that people’s ratings can be confounded

and that this way of measuring is only useful for images that have already

been produced, and does not provide insight into how to produce images

with certain complexity characteristics. The researchers recommend using

algorithms as they represent a more accurate and practical solution.

In this study, we use algorithms to automatically extract image informa-

tion related to visual complexity and some additional information about the

content of imagery. Table 1 lists all the automated, and interpretable2, mea-

sures included in our framework. We categorize these variables into feature

complexity or design complexity based on the way they are measured. Mea-

sures categorized as feature complexity measure the pixel-level variation of

the image, whereas measures categorized as design complexity measure the

2All our main variables of interest are interpretable, hence their selection. The DC-

and FC- Control variables are included because these two variables have been related to

complexity in the past and can not be measured or approximated by any of the other

variables. They are controls, because they are not interpretable or controllable by the

marketer/firm. The content control variables control for the semantic content of the

image, but are not visual complexity measures themselves.
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variation related to the design and arrangement of objects in the image. This

set of variables was derived from a more comprehensive list, see Table A.8 in

the Appendix, of all different ways visual complexity has been approximated

in the past. Many of these measures have been used in different studies to

approximate perceived visual complexity in past research, but they have not

been individually related to liking before and have not been explored in a

comprehensive way. In this research, we provide a nuanced view of complex-

ity that is measured in different ways and the relationship of these different

measures to liking.

(Insert Table 1 about here)

Visual complexity and its effect on the liking of imagery or visual content

in marketing has not been well studied, but there are two notable exceptions:

Pieters et al. (2010) and Shin et al. (2019). Pieters et al. (2010) focuses on

visual complexity as a characteristic of an ad and its influence on attitudes

towards ads and brands. Shin et al. (2019) focuses on the effect of image char-

acteristics, including visual complexity, on liking and reblogging behavior on

social media platform Tumblr. These studies measure the visual complex-

ity using the JPEG file size, and an additive measure to approximate the

complexity related to the objects. They then study the linear relationship

between these aggregate measures with the attitude of advertising and liking

of Tumblr posts, respectively. Interestingly, these studies have contrasting

findings, which can not be explained solely by the fact that attitude toward

ads is different than liking behavior. Especially, since both these studies use
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the same mechanisms to hypothesize the effects.

The focal priority of this study is related to these works, however instead

of using aggregate measures we investigate the individual aspects of visual

complexity and their impact on liking of imagery. We split up the visual

complexity into several automated and interpretable measures for the fol-

lowing reasons: 1) Visual complexity is not a monolithic construct (Corchs

et al., 2016; Nagle and Lavie, 2020). Instead, it is constituted by many differ-

ent factors. Previous studies have shown that there are many different ways

to approximate the perceived visual complexity (Olivia et al., 2004; Artese

et al., 2014; Corchs et al., 2016; Nagle and Lavie, 2020). These investiga-

tions highlight that each type or measure contributes to the perceived visual

complexity in a unique way. 2) Visual complexity as a single construct is

difficult to interpret and control. In addition, its impact on consumer liking

can be difficult to disentangle. It is not clear how a manager can increase,

or decrease, visual complexity as a whole. This is easier to control when

visual complexity is split up into individual measures. 3) The overarch-

ing categories, feature complexity and design complexity, for the automated

and interpretable measures have been shown to influence attitude and liking

(Pieters et al., 2010; Shin et al., 2019). However, the linear approximations

using aggregate constructs limit the implications of the findings, especially

considering the contrasting findings of these two studies. We posit that

instead of using aggregate constructs, splitting visual complexity up into in-

dividual, interpretable measures, and exploring non-linear relationships, we

can get a better understanding of the relationship between visual complexity

and consumer liking of FGI.
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2.1. Feature Complexity and Design Complexity

Derived from past research (Pieters et al., 2010), we distinguish two cate-

gories of visual complexity: Feature complexity and design complexity. These

categories relate to the gist of an image (Oliva, 2005). The gist of an im-

age can be defined as the phenomenon that an observer can comprehend a

variety of perceptual and semantic information from a view of a real-world

environment with just a glance. In other words, the brain quickly makes

sense of what we see. Oliva (2005) distinguishes perceptual and conceptual

gist, where the former describes the basic image properties the brain uses

to provide a structural representation of an image (feature complexity) and

the latter includes the semantic information that is inferred while viewing an

image or shortly after (design complexity). Furthermore, from a managerial

perspective, we view feature complexity as the type of complexity that arises

at the moment a picture is taken. It is a set of basic image features that can

be modified using programs such as photo editing software or by simply using

a filter on Instagram. On the other hand, design complexity is something

in direct control of the photographer. For example, the photographer can

decide to zoom in or out, or arrange objects or people to his/her preference.

The distinction between feature- and design complexity becomes even

more apparent when we study the mechanism that connects them to con-

sumer liking. Feature complexity evokes low-level visual processes and acti-

vates early layers in the visual processing system of the brain (Groen et al.,

2013). Feature complexity is hypothesized to impact liking behavior through

the peripheral route of persuasion (Shin et al., 2019), based on the elabo-

ration likelihood model (Petty and Cacioppo, 1986). Design complexity, in
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contrast, evokes mid-level visual processes and activates later layers in the

visual processing system (Groen et al., 2013). Design complexity is hypoth-

esized to influence the liking through the central route of persuasion (Shin

et al., 2019).

2.2. Feature Complexity

(Insert Figure 1 about here)

The feature complexity measures are based on low-level visual processes

in the primary visual cortex (Palmer, 1999). Feature complexity repre-

sents pixel-level variation and unprocessed or unstructured image information

without regards to the meaning of the image. An image is perceived more

complex when there is more detail and higher variation in (a) color, (b) lu-

minance, and (c) the quantity of edges, of an image. Feature complexity is

determined when an image is taken and the basic pixel-level characteristics

are encoded.

If an image has a feature complexity that is too high, it can be hard to

understand the content of an image, so it is expected negatively influence

attitudes at high levels (Pieters et al., 2010). Too much visual detail, is

distracting from the story of the image, making it less engaging. In addi-

tion, it can mask the important aspects of an image, which makes it harder

to understand what is actually depicted on the image. On the other hand,

feature complexity can be experienced as a positive peripheral cue that in-

creases physiological arousal and enhance memory (Deng et al., 2009). Ac-

cording to the elaboration likelihood model (Petty and Cacioppo, 1986), in
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an information-rich environment where information processing can be chal-

lenging and motivation to process stimuli is low, peripheral cues, such as

feature complexity are necessary to persuade consumers to stop and engage

(Shin et al., 2019). FGI that is low in feature complexity lacks the peripheral

cues and attractive aspects to make it engaging and likeable. However, at

the same time FGI that is high in feature complexity can be distracting and

too difficult to process. Early work in complexity of ads by Morrison and

Dainoff (1972) has indeed shown that positive attitudes toward images were

highest at intermediate levels of complexity.

As a result, we expect that there is a non-linear relationship between

feature complexity and liking. A certain level of complexity is needed to

provide positive peripheral cues, however too much complexity might make

it overly challenging to process and recognize what is depicted on the image.

This negative effect of high complexity may be heightened in an environment

such as social media, where a user is scrolling through content quickly, and

may not have enough time to process a complex image. For these reasons,

we propose the following hypothesis, with respect to feature complexity:

H1: Feature Complexity, composed of (a) color, (b) lumi-

nance, and (c) edge density, has an inverted u-shaped relationship

with the liking of FGI.

Feature complexity is based on the variation in pixels in an image. More

detail in the basic visual features means more computer memory is needed

to store an image. Pieters et al. (2010) and Shin et al. (2019) use the amount
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of computer memory (i.e., JPEG file size) as their measure for feature com-

plexity.3 Although convenient, the file size of an image does not provide

information as to what specific visual feature contributed to the complexity

or consumer interaction with the image.

Therefore, we examine three basic visual features individually that to-

gether constitute the main components determining feature complexity of

the image: Color, Luminance and Edge Density. We propose measures for

the complexity within each of these features to develop a better understand-

ing of their individual effects on liking. See Figure 1 for sample images of

low, medium and high complexity. The complexity scores will give managers

the ability to manipulate images in such a way that they can neutralize the

harmful effects of one and enhance the beneficial effects of another.

(Insert Figure 2 about here)

2.3. Design Complexity

Design complexity of an image captures the complexity of the semantic

information of the scene in an image. Design complexity evokes mid-level

visual processes based on objects and pattern recognition (Palmer, 1999;

Pieters et al., 2010). Images with a higher variation in terms of patterns and

objects present are more complex.

Design complexity may impact pleasure and arousal when viewing an im-

age that directly influences the formation of a first impression (Tuch et al.,

2009). Therefore, we expect that design complexity directly impacts the

3In Shin et al. (2019), this is called pixel-level variation
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liking of FGI on social media. Higher complexity in design has shown to

improve attitude towards advertisements, due to the collative properties of

an image (Palmer, 1999; Pieters et al., 2010). These studies show that in-

tricacies in creative design make visual content more engaging to the viewer

and generally more likeable. In addition, high complexity in advertising is

viewed as positive because it helps slow down readers of magazines, requiring

them to pay more attention to the ads (Nelson, 1994). There is no reason

that this argument would not continue to hold true on social media.

Other research, however, has found negative (Shin et al., 2019), non-

linear/mixed (Geissler et al., 2006; Deng and Poole, 2010), effects. The main

explanation for these negative findings is that a higher design complexity

requires too much cognitive effort to process and understand the ”story” of

an image. The vast amount of content, and low motivation to process infor-

mation, makes central cues less engaging. For this reason, Shin et al. (2019)

argue that fewer central cues, or a lower design complexity in our case, are

better. Work in advertising supports this notion by claiming that simplicity

works, because it looks less cluttered and more ”professional” (Aitchison,

2012). In addition, simple designs are easy to recognize and process, be-

cause they activate visual processes related to object and pattern processing

(Palmer, 1999). Finally, Deng and Poole (2010) highlight that higher diver-

sity and number of visual stimuli may improve the attitude, while the order

in terms of irregularity and symmetry in the arrangement negatively impacts

the attitude.

The mixed findings suggest non-linearity in the actual relationship. The

theoretical explanation in support of the findings in these papers focuses
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mostly around either end of the spectrum of design complexity and finds

that either low or high design complexity has high positive effects. On the

one hand, an image that is low in design complexity, has fewer central cues,

looks clean, and is easy to understand and process, and is therefore likeable

(Shin et al., 2019; Aitchison, 2012). On the other hand, an image that is high

in design complexity, has a creative and intricate design, might slow down

social media scrolling, and has collative properties, which make it likeable as

well (Pieters et al., 2010; Nelson, 1994). The middle ground has neither of

these qualities, so we suspect that an image either needs to be simple or more

complex in the design to make it appealing and likeable. Although we sus-

pect such a non-linearity, examining the precise relationship between design

complexity and liking remains more of an empirical question. In addition, we

recognize that there are boundaries, such that we do not necessarily expect

that very low levels of design complexity or very high design complexity will

be more likeable. We hypothesize the following with respect to the design

complexity:

H2: Design Complexity, composed of (a) the number of ob-

jects, (b) irregularity of object arrangement, and (c) asymmetry

of object arrangement, has a u-shaped relationship with the liking

of FGI.

Pieters et al. (2010) identify six general principles of the design com-

plexity of ads: quantity of objects, irregularity of objects, dissimilarity of

objects, detail of objects, asymmetry of object arrangement, irregularity of
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object arrangement. Subsequently, they add all these up into a single mea-

sure for design complexity. Design complexity is calculated from scoring the

images manually on these six general principles. Shin et al. (2019) create an

automated measure of the total design complexity score, related only to the

number of objects, by using the output of a pre-trained CNN.

Instead, we propose individual measures that capture the key elements

of the design complexity of an image and investigate their relationship with

liking separately. Although, Pieters et al. (2010), identify six principles of

design complexity, the irregularity of objects and the detail of objects that

they discuss are more reflective of pixel-level variation (feature complexity),

and in empirical investigations have been shown to be closely related to

the edge density, as such they are already captured in our other measures.

For this reason, we do not include these in the design complexity category.

Additionally, we find that it is better to combine the quantity of objects and

the dissimilarity of objects into a single variable that measures the number

of unique objects. This results in three automated, interpretable, measures

for design complexity: (a) Number of Unique Objects, (b) Irregularity of the

Object Arrangement, and (c) the Asymmetry of the Object Arrangement.

See Figure 2 for sample images with low, medium and high design complexity

in the three features.

To recap, we have two overarching classes of visual complexity - feature

complexity and design complexity. We construct six measures within these

two classes of visual complexity. We expect to find an inverted u-shape

relationship between liking and feature complexity and a regular u-shape

relationship between liking and design complexity. In the next section, we
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describe how we will empirically test the conceptual framework on Instagram

data. In section 4, we then validate that our measures accurately reflect

human perception.

3. Empirical Application

To test our visual complexity framework, we have gathered a rich visual

social media dataset from Instagram. Instagram is one of the main social

media platforms of present day, and has recently been used to study the

impact of visual content by previous work (Liu et al., 2020; Rietveld et al.,

2020). Our motivation for using Instagram can be found in the web appendix.

3.1. Data

Before collecting the data from Instagram, we selected which brands we

would analyze based on their Gartner L2 Digital IQ index.4 We have selected

the top 1000 highest ranked brands based on this index. Subsequently, we

have collected all posts of these brands over a 1-year period, starting on

05/01/2015 and ending 04/30/2016. To ensure an equal comparison be-

tween brands we have decided that out of the 1000 brands we only include

brands that post at least once a week over the focal period, resulting in ap-

proximately 150,000 posts corresponding to 633 brands across 27 different

industries. This selection was driven by the fact that we intend to analyze

overall impact of the complexity measures across all industries. We want

to understand the image aspects that drive the liking of images regardless

4Retrieved from: https://www.l2inc.com/about/l2-digital-iq-index
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of the brand posting it or the audience it is aimed for. The posts con-

sidered for this study are FGI only, which means they are generated and

posted on the accounts owned by the brand. The data can be accessed at

https://uvaauas.figshare.com/articles/dataset/{extension}.5

3.2. Model Development

We model the liking of FGI by gathering the number of likes for each

post and applying a model suitable for count data: negative-binomial (NBD)

regression. Here is the model specification:

log(yi,b) = α + β1Colori + β2Color
2
i + β3Luminancei + β4Luminance

2
i

+β5EdgeDensityi+β6EdgeDensity
2
i +β7FrequencyFactori+β8FrequencyFactor

2
i

+ β9Objectsi + β10Objects
2
i + β11IrregularityOAi + β12IrregularityOA

2
i

+β13AsymmetryOAi+β14AsymmetryOA
2
i +β15NumRegionsi+β16NumRegions

2
i

γ1log(Followersb)+γ2TextPositivei+γ3TextNegativei+γ4BrandControlsb

+γ5TemporalControlsi+γ6PhotographyControlsi+γ7ContentControlsi

(1)

where the i subscript indicates a particular post and the b subscript indi-

cates the brand that posted it. The liking of posts is a non-negative integer

with a high variance. It appears to follow a near power-law distribution,

something that has been observed in many cases of social media predic-

tion research (Gelli et al., 2015; Khosla et al., 2014; Mazloom et al., 2016).

5These are the extensions to access the data: Raw data: Data rds/14141009,

Regression input data: Final Data/14141039, Instagram image jpeg files: Insta-

gram images/14153114
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The majority of posts receive very few likes whereas a few posts receive up

to a million likes. We observe this over-dispersion in the data, similar to

other social media marketing studies (Rooderkerk and Pauwels, 2016; Ri-

etveld et al., 2020). In addtion, we follow recommendations not to trans-

form the count data (Cameron and Trivedi, 2005; Reitan and Nielsen, 2016).

Colori, Luminancei, and EdgeDensityi are the main feature complexity

components extracted from post i, FrequencyFactori is added as a control

variable that also measures feature complexity. Objectsi, IrregularityOAi,

and AsymmetryOAi correspond to the design complexity components.

γ1 and γ4 capture the brand-level effects to control for the variation due

to the brands. The number of followers captures the size of the audience and

the activity and hashtags measures the frequency of posting and hashtags

used. We used specific measures instead of brand-level fixed effects in the

form of dummies, because we want to attribute the variation in brand to

observed variables.

McParlane et al. (2014) show how the time of posting affects image pop-

ularity on social media. We follow their approach by including three time-

dependent dummy variables to control for time of posting - time of day, day

of week and the season. Textual information is included as control variables

as it is complementary to visual information for popularity prediction (Over-

goor et al., 2017). Specifically, we include the positive and negative sentiment

scores extracted from the image caption. Finally, we have operationalized 34

content control variables, related to photography, type of image and presence

of a humane face. These are extracting using multipl pre-trained convolu-

tional neural networks. The full model as shown in Equation 1 achieves our
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highest observed adjusted R-squared.

3.3. Variable Operationalization

Dependent Variable - Liking: We will focus on the consumer liking

of imagery by examining how many likes an image receives on Instagram.

Likes reflect well the first impression and affection consumers have with the

image. The dependent variable consists of the total number of likes the image

received.

Feature Complexity - Color: We measure the color complexity of an

image by describing the richness of the color constitution. It consists of a

linear combination of the mean and standard deviation of the pixel cloud in

the color plane (Corchs et al., 2016; Hasler and Suesstrunk, 2003). We have

taken the most accurate representation from Hasler and Suesstrunk (2003).6

First, we transform the image from RGB space to CIELab colorspace. We

then calculate the µC , σa, and σb, that represent the mean Chroma, stan-

dard deviation along the a axis, and the standard deviation along the b axis

respectively. From there we can best estimate the colorfulness of image i as

follows:

Colori = 0.94 ∗ µC +
√
σ2
a + σ2

b (2)

Feature Complexity - Luminance: First, we extract the luminance

by transforming the RGB color space to YUV from which we can calculate

the luma value (Y) per pixel. We use the luminance value of each individual

pixel to find all unique levels of luminance in the image. Then, we count

6After our validation experiment in the next section this turns out the most accurate

measure for FGI on Instagram as well.
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the number of pixels that contain these levels of luminance to construct the

luminance variety entropy measure, as follows:

Luminancei = −
T∑

j=1

njlog(
nj

N
) (3)

where T is the total number of unique luminance levels. nj is the count of

pixels that contain unique luminance level j. N is the number of total pixels.

Feature Complexity - Edge Density: To detect edges in the image

we use the Canny edge detector (Canny, 1987). Every pixel in the image

will be classified as either 0 (not on an edge) or 1 (on an edge). As a result,

the edge density measure is the total number of pixels on an edge divided by

the total number of pixels in an image. The edge density is denoted by the

formula:

EdgeDensityi =
ei
N

(4)

where e is the result of the binary classification of pixel i. N is the total

number of pixels.

Design Complexity - Objects: He et al. (2017) proposed Mask R-

CNN, using Region-Based CNNs Girshick et al. (2014) to classify regions

of interests within images, to accurately detect objects within an image.

In (Nagle and Lavie, 2020), the authors show that this is in fact the most

effective individual predictor of visual complexity. Using a pre-trained Mask

R-CNN, trained to recognize 81 different types of objects, we are able to

count the total number of (unique) objects within an image.7

7Interestingly, in our validation experiment (next section) we find that when asking

participants to rate the complexity of images in terms of the number of unique objects,
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Design Complexity - Irregularity of Object Arrangement: The

Feature Congestion measure of visual clutter, proposed by Rosenholtz et al.

(2007), measure does not explicitly find objects, but it incorporates certain

aspects of perceptual organization, such as grouping by proximity and simi-

larity. When the appearance of one object is easily predicted from its neigh-

bors, then there is a regular or structured arrangement of objects present.

For this reason, we find that the orientation clutter reflects the irregularity of

object arrangement. Using the code provide by Rosenholtz et al. (2007)8, we

compute oriented opponent energy (Bergen and Landy, 1991), which returns

a bi-vector: (kcos(2θ), ksin(2θ)), at each image location and scale. θ is the

local orientation and k is related to the extent to which there is a single strong

orientation at the given scale and location. Orientation clutter is computed

as the volume or area of an orientation distribution ellipsoid, which is the

determinant of the covariance matrix of the bi-vector. The irregularity of the

object arrangement is then calculated by averaging over the entire image.

Design Complexity - Asymmetry of Object Arrangement: Using

the same feature congestion map, with respect to the orientation, we can cal-

culate the vertical and horizontal asymmetry. Inspired by Zhang et al. (2017),

we divide the image into two planes (top and bottom, and left and right, for

vertical and horizontal respectively) and compare opposite arrangement ir-

regularity differences. Each pixel is compared to its vertical (horizontal)

the total number of objects, instead of the total number of unique objects, better reflects

the perceived complexity.
8The authors have provided the MATLAB code at

http://dspace.mit.edu/handle/1721.1/37593
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counterpart. We take the average of the vertical and horizontal asymmetry.

A larger difference represents a larger asymmetry of object arrangement.

3.4. Control Variables

Feature Complexity Control - Frequency Factor: The ration the

ratio between the frequency corresponding to the 99% of the image energy

and the Nyquist frequency (Corchs et al., 2016).

Design Complexity Control - Number of Regions: Calculated using

the mean shift algorithm (Comaniciu and Meer, 2002).

Brand Followers: The size of the audience is reflected by the number of

followers of the brand posting the images. Upon inspection, we observe that

the number of followers is highly correlated with the number of likes.

Brand Activity: Measured by the number of posts that the brand has cre-

ated on Instagram during the measurement time period.

Time of day / day of week / season: We also incorporate time of day,

day of the week, and season of the year control variables.

Number of image tags: An image tag is a reference to some other user

(person or brand) within the caption or image itself.

Textual Sentiment: We include the positive and negative sentiment scores

extracted from the image caption. We use Sentistrength (Thelwall et al.,

2010) to calculate scores ranging from 1 (neutral) to 5 (very high valence).

Content Controls: To control for the content characteristics of the image,

we have operationalized a large set of image features. First, we constructed

13 photography attributes, using some state of the art image mining methods

(Zhang et al., 2017; Zhang and Luo, 2018), and added these to the regres-
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sion. Second, we construct a set of most frequent types of images, and the

presence of faces (humans). We operationalized this set of variables using

three separate pre-trained CNNs. 1) we detected Adjective-Noun Pairs us-

ing the MVSO model (Borth et al., 2013; Rietveld et al., 2020). From the

classifications, we created binary indicators for the top 10 most frequently

occurring Adjective-Noun Pairs in our dataset. 2) we detected scenes us-

ing a pre-trained CNN trained to recognize 365 scenes/places (Zhou et al.,

2018). We created binary indicators for the top 10 most frequently occuring

scenes/places in our dataset. 3) we utilized a pre-trained VGG16 architec-

ture CNN (Parkhi et al., 2015) to detect faces in images, creating a binary

indicator for the presence of faces. For a full list and description of all these

control variables we refer you to the Web Appendix.

3.5. Model Estimation

As in traditional negative binomial regression analyses, we estimated

Equation 1 by maximizing the log-likelihood function. We normalized all

the explanatory variables in the final model, such that their beta coefficients

can be compared. We checked for multicollinearity, the variance inflation

factors revealed that there is no issue.

4. Validation Experiment

Before we explore the relationship between the visual complexity and the

consumer liking we need to validate whether our measures are indeed in-

terpretable and reflective of human perception. Visual complexity has been

studied, tested and validated extensively in the studies presented in Table
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A.8, but the main focus of these studies has been to estimate the corre-

lation between image features and visual complexity as a single construct.

However, visual complexity is not a monolithic construct, but rather visual

complexity can have different aspects. As seen in these studies, it is often

a (non-)linear combination of features that best approximates the perceived

visual complexity. Moreover, individual-level measures that are more closely

tied to the underlying image properties are more interpretable than aggre-

gated measures. Thus, we construct individual measures of visual complexity.

The goal of this experiment is to validate these individual measures by deter-

mining if the algorithmic measurements of visual complexity match up with

human perception of those same visual complexity concepts.

We follow (Shin et al., 2019) in their assumption that it can be difficult for

humans to objectively judge and rate with exact numbers abstract concepts

related to images. In this sense, it can be difficult for a human to generate

an exact value for an image using our proposed complexity measures. It

is more intuitive instead, to view this as a ranking problem. This way we

can ask participants to judge pairs of images and select the image that feels

most complex instead of asking them to rate an image based on the perceived

complexity. For each complexity dimension, the participants can then use the

set of images and compare the results, instead of scoring individual images.

To validate our proposed measures, we test if the ranking of a set of images

by our automated measures correspond to those of human participants. We

have sampled 900 image pairs for each complexity measure. We have sampled

300 images from between the 10th and 35th percentiles, 300 images from

between the 40th and 60th percentile, and 300 images from between 65th
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and 90th percentile. As we are testing non-linear relationships between our

visual complexity measures and liking, we want to validate comparisons of

low-medium, low-high, and medium-high complexity imagery. This way we

can not only compare if our measures are accurate in ranking the images, but

we can also distinguish if the differences are perceived more easily between

different regions of the distribution.9

The validation experiment was performed with 289 undergraduate stu-

dents. For each participant in the survey we randomly drew 35 pairs of

images out of the 900 image pairs, for each of the 6 complexity measures.

Each image pair was, on average, rated by 10+ participants to ensure validity

of the results. The Cronbach Alpha of our measures was .74, exceeding the

commonly accepted threshold of .7 (Nunnally, 1978). The image out of the

image pair that receives the majority vote is considered the image that is

perceived to be most complex by human participants. We then compare the

number of times our algorithmic measure agrees with the selected option by

the participants as a percentage of the total image pairs. In addition, since

some image pairs might be more difficult to evaluate than other we investi-

gate as a subset those images where there is unanimous human agreement.

The higher the percentage of agreement between humans and algorithms, the

better the automated objective measure reflects the perceived complexity on

that individual complexity dimension.

(Insert Figure 3 about here)

9The comparison between the different levels of complexity can be found in the web

appendix
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The main results of the validation experiment are summarized in Figure

Appendix I. Overall, we observe that all automated measures are in over

60% agreement with the majority vote of the participants, which is compa-

rable to findings in other studies (Shin et al., 2019). The results highlight

that our measures accurately reflect the perceived complexity by humans.

The results also highlight that measures such as color complexity and edge

density are easier to interpret and detect by participants, than luminance

and the asymmetry of the object arrangement. Intuitively this makes sense,

because as humans we often talk about colors and colorfulness, whereas we

don’t often talk about luminance or asymmetry of object arrangements. In

addition, we observe that the images that received a unanimous vote from

the participants on average lead to an increase in agreement percentage of

between 10% and 19% for the different complexity measures, reaching up to

96% agreement for color complexity. This means that our measures accu-

rately predict the most complex image when humans are most easily able to

agree about the complexity of the image.

5. Results

(Insert Table 2 about here)

Table 2, shows the descriptive statistics of the variables in the model. The

number of likes shows a power-law distribution where the majority of posts

receive very few likes and a small number of posts receive a large number
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of likes. The color complexity ranges from 0 to 18.41, a mean of 3.00 with

a large tale on the upper end. The luminance complexity entropy measures

ranges from .02 to 2.85 where the majority of posts lie between 2.5 and the

maximum. The number of objects detected in the images ranges from 0 to

100. On average there are approximately 17 objects in an image. The irreg-

ularity of the object arrangement ranges from .00 to .23 with a mean of .06,

whereas the asymmetry of object arrangement ranges from .00 to .92, with

a mean of .24.

(Insert Table 3 about here)

Table 3 lists the correlations between our main variables of interest. The

correlations between the visual complexity measures are modest, only the

irregularity and the asymmetry of object arrangement are moderately cor-

related. We have tested for multicollinearity using variance inflator factors

and we observe no issues.

(Insert Table 4 about here)

(Insert Figure 4 about here)

In Table 4, the results of four different regression analysis are listed. The

”Linear-Aggregate” model is to replicate the findings of Shin et al. (2019).

The ”Linear-Individual” model highlights that splitting up feature- and de-

sign complexity into individual measures offers a more nuanced view of these
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findings. The ”Quadratic-Aggregate” results support hypotheses H1 and H2,

where we find that when we use the aggregate measures, as used by Pieters

et al. (2010) and Shin et al. (2019), the effects are in fact non-linear. The re-

sults show that there is an inverted u-shape relationship (β = 1.954, p < .01

and β = −2.467, p < .01 for feature complexity and feature complexity

squared respectively) between feature complexity and liking, thus we ac-

cept H1. On the other hand, we find that design complexity has a u-shape

relationship (β = −1.400, p < .01 and β = 1.716, p < .01 for design complex-

ity and design complexity squared respectively) with liking, accepting H2.

The effects turn out to be more nuanced, however. The ”Linear-Individual”

model shows that for the linear findings of previous studies the effects are

more nuanced. The full model ”Quadratic-Individual” provides a holistic

view of the relationship between visual complexity and consumer liking of

FGI. The individual effects for feature complexity variables highlight that

H1 is indeed fully supported and each individual variable has an inverted

u-shape relationship with the liking. That is, we find positive main effects

of the color (β = .222, p < .05) the luminance (β = .221, p < .01), edge

density (β = 1.730, p < .01) and the feature complexity control variable fre-

quency factor (β = 1.502, p < .01) and a negative effect of their square terms

(β = −.742, β = −.121, β = −2.013, and β = −.512, with p < .05). Initially,

the relationship between liking and these measures of feature complexity are

positive, but when they increase, it prompts decreasing returns for the lik-

ing. Thus, we accept H1a (color), H2b(luminance), and H2c (edge density),

there is an inverted u-shape relationship between the individual components

of feature complexity and liking of social media imagery.
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The top row in Figure 4 visualizes the effects for the feature complexity

measures. We observe clear inverted u-shape relationships for each of these

variables with consumer liking. Each variable was normalized using a min-

max normalization to be within 0 and 1. The global maxima for each of

these functions lies within the domain of each variables, with global maxima

of .15, .91 and .43 for color, luminance, and edge density respectively indi-

cated by the solid point and dashed line. The circles on the plot indicate

the percentiles (1st, 25th, 50th, 75th, and 99th) of the distribution of the

independent variables. We observe a gradual drop off for increasing values

of color, and a gradual drop off for decreasing values of luminance. The edge

density has a steep drop-off on either side of the maximum.

For the individual design complexity measures we find only partial sup-

port for H2. The results show negative main effects for objects (β = −.177, p <

.05) the irregularity of object arrangement (β = −1.143, p < .01), and asym-

metry of object arrangement (β = −.304, p < .01), but no significant effect

for the design complexity control region count (β = .178, p > .1). The

squared terms have positive coefficients for objects (β = .111, p < .01) the

irregularity of object arrangement (β = 1.1789, p < .01), thus supporting

H2a and H2b. However, we find a negative effect for squared term of the

asymmetry of OA (β = −.589, p < .01), not supporting H2c. In addition,

we find no effect for the our design complexity control variable region count

(β = −.339, p > .1).

The bottom row in Figure 4 visualizes the effects for the design complexity

measures. We observe clear u-shape relationships for objects and irregularity

of the object arrangement. It is important to note the boundary conditions
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of our analysis. The observed range of these variables is limited and we can

therefore only model the relationship within these boundaries. For example,

the number of objects ranges from 0 to 100. An image with more than 100

objects is not observed and therefore we do not know its effect on liking. Zero

objects are observed, but excluding zero object images from the data did not

yield changes in the results. Each variable was normalized using a min-max

normalization to be within 0 and 1. The global minima for two of these

functions lies within the domain of each variables, with global minima of

.80 and .32 for objects and irregularity of object arrangement10. We observe

an inverted u-shape relationship for the asymmetry of object arrangement

with a global maximum of -.26 for asymmetry of object arrangement. This

is outside of the domain for this variable. The estimated number of likes is

monotonically decreasing for the entire domain of the asymmetry of object

arrangement, so the relationship with liking is, in fact, negative.

To summarize, the results show all aspects of feature complexity influence

liking in an inverted u-shape type of relationship, fully supporting H1 includ-

ing a, b, and c. Design complexity as a whole has a u-shape relationship with

liking, supporting H2, but we only find support for H2a (objects) and H2b

(irregularity of the object arrangement) individually. Combining the esti-

mated coefficients with a plot, we find a negative relationship between the

asymmetry and liking of consumers, which suggests that just a symmetrical

design for images is strongly related with consumer liking, not supporting

H2c.

10These minima do not lie close to the means of each normalized variable
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5.1. Robustness Checks

To test the robustness of our model, we also investigated the robustness

of inclusion of content control variables, the size of the effects of our visual

complexity variable, confirmed the predictive validity of our model, and ex-

amined a generic brand-level fixed effects model. Our results show strong

correlations and these additional analyses simply strengthen those findings.

The results neither confirm nor disconfirm a direct causal effect.11

(Insert Table 5 about here)

Robustness against inclusion of controls variables: First, we in-

cluded the temporal controls. As observed in Table 5, there is no significant

change in the results. Second, we added the photography controls to the

regression. In Table 5, we observe that the absolute numbers change slightly,

though the direction of the effects remain the same. Finally, we added a set

of most frequent types of images, and the presence of faces (humans) to the

model. Table 5 shows that our results are robust to the inclusion of these

34 content control variables. The visual complexity effects are present above

and beyond the types of images and photography attributes. The full length

table with coefficients for the content control variables can be found in Table

C.11.

(Insert Table 6 about here)

11We have also performed analyses at the industry level and observed some minor

changes only.
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Model Fit: As observed in Table 6, the Negative Binomial Regression

fits the data better than a Poisson regression. This was expected due to the

overdispersion that we observe in the number of likes variable. There is a

very long tail in the distribution: Few posts obtain a large volume of likes,

whereas the vast majority of posts obtain few likes.

(Insert Table 7 about here)

Predictive Validity: To assess the predictive validity of our model, we

split the data in 20% test set and 80% training set. We predict the liking

for the test dataset using our trained model, the results in Table 7 are the

average for 5-fold cross validation. We investigate the predictive power of

our negative binomial regression using the visual complexity measures we

propose, and compare them to three benchmark models. As observed in

Table 7, the rank correlation is .9319, which is very high. The measure

indicates a high level of predictive validity. The RMSE is quite high as

well, which shows that it is much easier to predict the relative ranking of

a certain posts than it is to predict the exact number of likes. Especially

posts with an extremely high number of likes are difficult to predict and this

increases the RMSE. Most importantly, we observe that compared to the

benchmarks our model performs better. The predictive validity combined

with the interpretability of our method over the benchmarks highlights the

importance of our framework.

Size of effects: We observe an inverted u-shape relationship between
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the measures of feature complexity and the liking of social media imagery.

These results suggest that we would be able to find the optimum for both

these measures that would lead to the highest number of expected likes when

keeping all other factors the same. As an examination of the effect size we ex-

plored what this optimization effect would be for choosing the optimal image

over a non-optimal image and we observe that improving feature complexity

to its theoretical optimum would increase the expected number of likes by

19%. Given that the average likes on an image in our brand set is 4138,

this would result in an increased number of likes of 786 on average. A quick

and easy way for brands to improve the feature complexity of an image is

to apply a filter based on the complexity scores. We explored the effect of

choosing the right filter and we observe that just by choosing the right filter

would improve the expected number of likes by 3%, see Appendix B and

Figure Appendix B for an illustration. That means this would result in an

increased number of likes of 125 on average. It is important to note that

applying a filter takes less than a second since it involves simply clicking on

the appropriate filter. This means that the ROI for either minor uses of our

model is high.

Brand-level fixed effects: We have chosen to include specific brand-level

fixed effects to account for the fact that brands have very different social me-

dia capabilities from each other. The specific brand-level fixed effects that

we include are post frequency and the number of followers. However, we also

examined a negative binomial model with fixed-effects for each individual

brand, but it does not lead to a change in our conclusions.12

12We considered moving the control variable of number followers to be part of the DV
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6. Discussion

In this paper, we expanded, automated, and scaled up the existing visual

complexity framework proposed by Pieters et al. (2010). Subsequently, we

have investigated the influence of each individual measure on liking behavior

on Social Media. We observed an inverted u-shape relationship of feature

complexity, including its individual components, with liking, fully supporting

Hypothesis 1 - 1a,1b, and 1c. In contrast, we observed a u-shape relationship

of design complexity, including two out of three of its individual components,

with liking, thus supporting Hypothesis 2 - 2a and 2b.

6.1. Theoretical Implications

This paper has two major theoretical contributions. First, we show that

the relationship between the two visual complexity categories and consumer

liking is not linear. Previous theory has established that feature complexity

negatively influences attitudes (Pieters et al., 2010), while other research has

shown that feature complexity provides positive peripheral cues (Shin et al.,

2019). Our results suggest truth in both findings, such that the optimum

level of feature complexity is somewhere in the mid-region, depending on

its specific aspects color, luminance, or edge density. The same two studies

(Pieters et al., 2010; Shin et al., 2019) and others are also contrasting in

their findings on design complexity.We find that both extremes of the design

complexity spectrum have high positive impact on liking.

(i.e., dividing likes by number of followers), but this would not fully control for other

aspects of this variable, such as brand strength and resources, and so such a specification

would prevent us from identifying the true effect of the image.
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Our second contribution is showing that visual complexity is not a linear,

monolithic construct and can therefore not be captured by a single additive

measure. Instead of using aggregated measures for feature and design com-

plexity, we developed and validated a set of measures that provides us with a

more nuanced and interpretable view of the relationship between liking and

visual complexity. We observe that all three aspects of feature complexity

(i.e., color, luminance, and edge density) influence the liking of FGI uniquely

in an inverted u-shape manner. For design complexity, we observed a u-shape

relationship with liking for the number of objects and the irregularity of the

object arrangement, but a strictly negative relationship between asymmetry

and liking.

6.2. Methodological Implication

We have developed a framework that enables researchers to study image-

based social media in a similar manner to the way they study text-based

social media. Our automated measures, both aggregate and individual, have

been validated in an experiment to ensure that they accurately represent how

visual complexity is perceived. From here, we have identified the aspects of

social media imagery that lead to liking rather than the particular images

that are liked. This gives us theoretical principles, based on visual complexity

theory (Attneave, 1954; Donderi, 2006), about how to design image-based

social media that advertisers and marketing managers can benefit from. We

extracted aspects of photos that influence liking regardless of the nature of

the image. Our results are robust to including a wide variety of content

characteristics as control variables in our regression.
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6.3. Managerial Implications

The combination of understanding how different aspects of feature- and

design complexity influence liking and the automated extraction of this in-

formation directly from images enables a powerful tool for content managers

(Kumar et al., 2016). For example, we show that using the feature complexity

measures, content managers can improve liking by 3% with just a few addi-

tional clicks. Figure B.5 and Appendix B illustrate a potential guide to using

Instagram filters. Unlike feature complexity, design complexity needs to be

considered before the photo is taken. The analysis suggests to use a regular

and simple design, using a unique object or a regular arrangement of multiple

objects in the image, but to be aware of their symmetrical arrangement and

orientation.

6.4. Limitations and Future Research

Our dependent variable, liking, has limitations. For instance, we cannot

know who likes a post and some likes hold more value than others. This

so-called ”image journey” is a problem that requires a much richer dataset

to know exactly how much extra exposure a single like has generated.

In addition, moderators such as brand strength or brand familiarity could

potentially change the relationship between visual complexity and liking.

When users are familiar with a brand, the impact of image complexity on

liking could change. Brands could investigate whether the general findings

are applicable to their brand. Different users could also have different pref-

erences, which remains to be explored in future work.

Our complexity framework opens up possibilities for a wide range of ap-

plications. Managers, policy makers, and marketing professionals alike can
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extract large amounts of information from images and use this information to

better understand their consumers and optimize their content for the ”good”

of the consumer. Image analytics at scale can offer key insights in under-

standing the diffusion of online FGI and we encourage future exploration of

the possible applications.
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7. Tables

Table 1: List of image statistics used in this paper - Feature Complexity (FC), Design

Complexity (DC) and Controls. The FC and DC are controls, because they are more

difficult to interpret.

Type Measure Reference
FC Color Complexity Artese (2014), Corchs (2016), Hasler (2003)
FC Edge Density Cavalcante (2014), Corchs (2016), Rosenholtz (2007)
FC Luminance Entropy Cavalcante (2014)
DC Object Count Oliva (2001), Pieters (2010)
DC Object Arrangement asg Oliva (2001), Pieters (2010)
DC Object Arrangement Irregularity Pieters (2010)
DC - Control Region Count Comaniciu (2002)
FC - Control Frequency Factor Corchs (2013), Corchs (2016)
Content Control Photography measures Zhang (2017), Zhang (2018)
Content Control Face Detection Parkhi (2015)
Content Control Adjective-Noun Pairs Borth (2013)
Content Control Scenes Zhou (2014)
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Table 2: Descriptive Statistics

Variable mean sd min max

Likes 4,138 30,694 0 935,690
Color 3.00 1.75 .00 18.41
Luminance 2.48 .49 .02 2.85
Edge Density .09 .03 .00 .35
Frequency Factor .42 .04 .00 .49
Objects 17.38 20.51 0 100
Irregularity of OA .06 .02 .00 .23
Asymmetry of OA .24 .11 .00 .92
Region Count 56.51 30.11 0 1,320
Followers 168,751 1,679,190 15 46,098,258
Text Sentiment Positive 1.74 .89 1 5
Text Sentiment Negative 1.23 .56 1 5

Table 3: Correlation Matrix

1 2 3 4 5 6 7 8 9 10 11
1 Likes
2 Edge Density .04**
3 Luminance .02* .45**
4 Frequency Factor .04** .42** .06**
5 Color -.02** .08** .22** -.02**
6 Irregularity of OA -.06** .21** -.02** .26** .08**
7 Region Count -.03** .18** .28** .16** .18** .42**
8 Objects -.03** .12** .16** .06** .04** .17** .32**
9 Asymmetry of OA -.08** .16** .13** .21** .11** .75** .36** .16**
10 Followers .92** .05** .02** .04** -.07** -.15** -.04** -.08** -.13**
11 Text Sent. Pos. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
12 Text Sent. Neg. .00 -.01* .00 -.01* .01 .00 .00 .00 .00 .00 .06**
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Table 4: Negative binomial for 4 different specifications of visual complexity. The first

two columns are linear estimations using a linear combination and individual specifica-

tion, respectively. The second two columns are quadratic estimations using the same two

specifications.

Linear-Aggregate Linear-Individual Quadratic-Aggregate Quadratic-Individual
Feature Complexity .590∗∗∗ (.023) 1.954∗∗∗ (.062)
Edge Density .461∗∗∗ (.028) 1.730∗∗∗ (.085)
Luminance .139∗∗∗ (.015) .221∗∗∗ (.073)
Color −.179∗∗∗ (.043) .222∗∗ (.089)
Frequency Factor .707∗∗∗ (.031) 1.502∗∗∗ (.245)
Feature Complexity2 −2.467∗∗∗ (.103)
Edge Density2 −2.013∗∗∗ (.126)
Luminance2 −.121∗∗ (.050)
Color2 −.742∗∗∗ (.153)
Frequency Factor2 −.512∗∗∗ (.155)
Design Complexity −.413∗∗∗ (.025) −1.400∗∗∗ (.090)
Objects −.070∗∗∗ (.010) −.177∗∗∗ (.029)
Irregularity of OA .147∗∗∗ (.044) −1.143∗∗∗ (.179)
Asymmetry of OA −.702∗∗∗ (.039) −.304∗∗∗ (.108)
Region Count .026 (.102) .178 (.141)
Design Complexity2 1.716∗∗∗ (.155)
Objects2 .111∗∗∗ (.032)
Irregularity of OA2 1.789∗∗∗ (.236)
Asymmetry of OA2 −.589∗∗∗ (.199)
Region Count 2 −.339 (.437)
Log(Followers) .922∗∗∗ (.001) .920∗∗∗ (.001) .921∗∗∗ (.001) .921∗∗∗ (.001)
Text Sentiment Positive .004∗∗ (.002) .004∗∗ (.002) .004∗∗ (.002) .004∗∗ (.002)
Text Sentiment Negative −.003 (.003) −.003 (.003) −.003 (.003) −.003 (.003)
(Intercept) −1.502∗∗∗ (.036) −2.006∗∗∗ (.049) −1.532∗∗∗ (.039) −2.373∗∗∗ (.101)
Photography Controls X X X X
Content Controls X X X X
Temporal Controls X X X X
Brand Controls X X X X

Observations 147,963 147,963 147,963 147,963
Adjusted R-Squared .438 .452 .446 .453

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table 5: Stepwise regression, by introducing more controls in each step to highlight the

robustness of our results.

Stepwise Regression

Incl. Brand Incl. Temporal Incl. Photography All

Feature Complexity
Edge Density 2.036∗∗∗ (.084) 2.036∗∗∗ (.084) 1.728∗∗∗ (.085) 1.730∗∗∗ (.085)
Edge Density2 −2.316∗∗∗ (.125) −2.316∗∗∗ (.125) −1.938∗∗∗ (.125) −2.013∗∗∗ (.126)
Luminance .311∗∗∗ (.071) .311∗∗∗ (.071) .175∗∗ (.073) .221∗∗∗ (.073)
Luminance2 −.181∗∗∗ (.047) −.181∗∗∗ (.047) −.103∗∗ (.050) −.121∗∗ (.050)
Color .240∗∗∗ (.065) .240∗∗∗ (.065) .265∗∗∗ (.089) .222∗∗ (.089)
Color2 −.796∗∗∗ (.137) −.796∗∗∗ (.137) −.717∗∗∗ (.152) −.742∗∗∗ (.153)
Frequency Factor 1.236∗∗∗ (.241) 1.236∗∗∗ (.241) 1.360∗∗∗ (.245) 1.502∗∗∗ (.245)
Frequency Factor2 −.356∗∗ (.152) −.356∗∗ (.152) −.382∗∗ (.154) −.512∗∗∗ (.155)
Design Complexity
Objects −.140∗∗∗ (.028) −.140∗∗∗ (.028) −.169∗∗∗ (.029) −.177∗∗∗ (.029)
Objects2 .111∗∗∗ (.032) .111∗∗∗ (.032) .109∗∗∗ (.032) .111∗∗∗ (.032)
Irregularity of OA −1.348∗∗∗ (.170) −1.348∗∗∗ (.170) −1.177∗∗∗ (.178) −1.143∗∗∗ (.179)
Irregularity of OA2 2.037∗∗∗ (.228) 2.037∗∗∗ (.228) 1.849∗∗∗ (.236) 1.789∗∗∗ (.236)
Asymmetry of OA −.328∗∗∗ (.099) −.328∗∗∗ (.099) −.342∗∗∗ (.108) −.304∗∗∗ (.108)
Asymmetry of OA2 −.477∗∗ (.194) −.477∗∗ (.194) −.569∗∗∗ (.199) −.589∗∗∗ (.199)
Region Count .248∗ (.140) .248∗ (.140) .184 (.141) .178 (.141)
Region Count2 −.392 (.437) −.392 (.437) −.290 (.437) −.339 (.437)
Log(Followers) .923∗∗∗ (.001) .923∗∗∗ (.001) .922∗∗∗ (.001) .921∗∗∗ (.001)
Text Sentiment Positive .004∗∗ (.002) .004∗∗ (.002) .004∗∗ (.002) .004∗∗ (.002)
Text Sentiment Negative −.003 (.003) −.003 (.003) −.003 (.003) −.003 (.003)
(Intercept) −2.507∗∗∗ (.099) −2.507∗∗∗ (.099) −2.379∗∗∗ (.101) −2.371∗∗∗ (.101)
Brand Controls X X X X
Temporal Controls X X X
Photography Controls X X
Content Controls X

Observations 147,963 147,963 147,963 147,963
Adjusted R-Squared .445 .446 .446 .453

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table 6: Overview of model fit of Poisson vs. Negative Binomial Regression

Model Log Likelihood AIC BIC
Negative Binomial -952,709 1,905,545 1,906,179
Poisson -62,437,559 124,875,244 124,875,868

Table 7: RMSE and Spearman Rank Correlation for out of sample prediction using our

method compared to a model with visual content contral variables only and Pieters et al.,

Shin et al. and Corchs et al. benchmarks

RMSE SRC
Controls only 15,529 .9278
Corchs 15,057 .9318
Pieters 15,225 .9309
Shin 15,275 .9307
This paper 14,913 .9319
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8. Figures

Low Medium High

Color

Luminance

Edge Density

Figure 1: Sample images of low, medium and high complexity for each individual measure

of feature complexity.
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Low Medium High

Objects

Irregularity of OA

Asymmetry of OA

Figure 2: Sample images of low, medium and high complexity for each individual measure

of design complexity. Number Objects, Irregularity of Object Arrangement, Asymmetry

of Object Arrangement

Figure 3: Agreement percentages between the predicted scores and the participants’ votes.

The blue bars represent the agreement between the majority vote and the automated mea-

sures. The orange bars represent the agreement between images that received a unanimous

vote and the automated measures.
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Color Luminance Edges

Objects Irregularity of OA Asymmetry of OA

Figure 4: Visualization of the effects for each individual measure. The variables in the

regression analysis are normalized to be between 0 and 1. The y-axis represents the

estimated number of likes, all else being equal. The circles on the plot represent the

percentiles (1%, 25%, 50%, 75%, 99%) of the distribution of the independent variable.

The dashed line and the solid point indicate the global maximum/minimum.
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Appendix A. Visual Complexity
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Appendix B. Filter Guide

Figure B.5: Visualization of the filter guide. Given a picture and it’s complexity score,

we can apply potential filters and analyze the new complexity scores. From there, we

can select the optimal filter, (no filter included as option), applying the filter leads to a

predicted increase of 3% for the top picture and 1.5% for the bottom picture. We picked

low and high colorfulness pictures for our illustration. The predicted likes increase is

out-of-sample prediction, and we used these posts’ actual values for all other variables.

A quick and easy way for brands to improve the feature complexity of an

image is to apply a filter based on the complexity scores. We explored the

effect of choosing the right filter and we observe that just by choosing the

right filter would improve the expected number of likes by 3%. That means
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this would result in an increased number of likes of 125 on average. Figure

Appendix B, illustrates the process of a filter guide. Based on the feature

complexity scores of these images, we explore a set of potential filters. Then,

we analyze what the new complexity scores would be after applying these

potential filters. The filter (no filter as part of the options), that brings us

closest to the optimal values for each of the individual would provide us with

the highest predicted number of likes. We can then select the optimal filter

based on the predicted scores. In the examples, that gets us to an increase

of 3 % (1.5 %) for the top (bottom) image in predicted likes, all non-image

characteristics being equal. We used actual posts and their corresponding

scores for all variables. It is important to note that applying a filter takes

less than a second since it involves simply clicking on the appropriate filter.

The calculation of the feature complexity scores for all potential filters also

takes less than a second. An automated tool, therefore, would quickly be

able to apply the best filter based on the visual complexity of the image.
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Appendix C. Web Appendix - Descriptives and Regression

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Edges

2 Color .57*

3 Luminance .45* .63*

4 Irregularity of OA .21* .10* -.01*

5 Objects .12* .26* .17* .17*

6 Asymmetry of OA .16* .21* .14* .75* .16*

7 Diagonal Dominance -.01* -.02* -.02* .01* -.02* .00

8 Rule of Thirds -.05* -.07* -.04* -.06* -.04* -.05* .21*

9 V. Physical Dominance .06* .09* .06* .06* .06* .06* .01* .26*

10 H. Physical Dominance .02* .03* .01* .06* .04* .00 .02* .21* .13*

11 H. Color Balance -.29* -.50* -.42* -.24* -.19* -.39* .03* .04* .00 .02*

12 V. Color Balance -.30* -.50* -.41* -.30* -.18* -.48* .03* .05* -.07* .08* .56*

13 FG Size Diff .05* .06* .00 .10* .10* -.01* -.01* -.03* .06* .05* -.07* -.11*

14 FG Color Diff -.19* -.30* -.26* -.03* -.06* -.04* .03* .08* -.02* .01* .27* .25* -.48*

15 FG Texture Diff -.13* -.26* -.24* -.08* -.09* -.11* .01* .04* -.02* .01* .23* .26* -.35* .32*

16 Brightness -.19* -.24* -.28* .14* -.13* .04* .03* .05* -.03* -.02* .18* .18* -.02* .05* .12*

17 Saturation .13* .44* .29* -.03* .06* .02* .00 -.05* .03* .03* -.18* -.15* -.02* -.09* -.09* -.25*

18 Contrast .05* .28* .08* .19* .09* .18* .01* .00 .07* .07* -.26* -.22* .06* .07* -.04* -.06* .53*

19 Clarity -.27* -.33* -.33* .14* -.15* .05* .02* .05* -.04* -.02* .18* .18* -.04* .10* .14* .94* -.27* -.06*

20 Warmth .20* .28* .23* .08* .06* .09* .00 -.02* .03* .00 -.11* -.12* .01* -.11* -.08* .01* .09* .04* -.01*

Table C.9: Correlation between visual complexity and photography control variables.

Note: Brightness was removed from analysis due to collinearity with clarity.
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Table C.10: Descriptive Statistics
Variable mean sd min max

Dependent Variable
Likes 4,138 30,694 0 935,690
Feature Complexity
Color 3.00 1.75 .00 18.41
Luminance 2.48 .49 .02 2.85
Edge Density .09 .03 .00 .35
Frequency Factor .42 .04 .00 .49
Design Complexity
Objects 17.38 20.51 0 100
Irregularity of OA .06 .02 .00 .23
Asymmetry of OA .24 .11 .00 .92
Region Count 56.51 30.11 0 1,320
Textual Sentiment
Text Sentiment Positive 1.74 .89 1 5
Text Sentiment Negative 1.23 .56 1 5
Hashtags 4.31 5.24 0 39
Brand Specific
Followers 168,751 1,679,190 15 46,098,258
Posts 232 155 52 990
Photography
Diagonal Dominance .69 .24 0 1
Rule of Thirds .59 .12 0 1
Physical Dominance (Vertical) .83 .14 0 1
Physical Dominance (Horizontal) .85 .13 0 1
Color Balance (Vertical) .79 .08 0 1
Color Balance (Horizontal) .75 .09 0 1
Figure-Ground Size Diff .39 .35 0 1
Figure-Ground Color Diff .32 .20 0 1
Figure-Ground Texture Diff .15 .11 0 1
Saturation .30 .17 0 1
Contrast .45 .16 0 1
Clarity .49 .25 0 1
Warmth .25 .22 0 1
Content Controls (Binary)
Crazy car .02 .13 0 1
Classic castle .03 .16 0 1
Hot girls .01 .11 0 1
Outdoor party .01 .09 0 1
Busy office .01 .08 0 1
Amazing food .01 .09 0 1
Hot cup .01 .11 0 1
Cute animals .01 .08 0 1
Outdoor wedding .02 .13 0 1
Favorite team .004 .06 0 1
Art studio .004 .06 0 1
Bakery/shop .03 .17 0 1
Beach .01 .10 0 1
Clean room .04 .20 0 1
Coffee shop .01 .11 0 1
Desert/sand .01 .10 0 1
Museum/indoor .02 .14 0 1
Nursery .02 .14 0 1
Ocean .01 .07 0 1
Playroom .03 .16 0 1
Face .25 .43 0 1
Temporal Controls (Binary)
Afternoon .30 .46 0 1
Evening .39 .49 0 1
Night .18 .39 0 1
Weekend .19 .40 0 1
Spring .10 .30 0 1
Summer .31 .46 0 1
Fall .33 .47 0 1
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Table C.11: Full set of results with coefficients for all control variables. Full length of

Table 4
Quadratic-Individual

Feature Complexity
Edge Density 1.730∗∗∗ (.085)
Luminance .221∗∗∗ (.073)
Color .222∗∗ (.089)
Frequency Factor 1.502∗∗∗ (.245)

Feature Complexity2

Edge Density2 −2.013∗∗∗ (.126)
Luminance2 −.121∗∗ (.050)
Color2 −.742∗∗∗ (.153)
Frequency Factor2 −.512∗∗∗ (.155)
Design Complexity
Objects −.177∗∗∗ (.029)
Irregularity of OA −1.143∗∗∗ (.179)
Asymmetry of OA −.304∗∗∗ (.108)
Region Count .178 (.141)

Design Complexity2

Objects2 .111∗∗∗ (.032)
Irregularity of OA2 1.789∗∗∗ (.236)
Asymmetry of OA2 −.589∗∗∗ (.199)
Region Count 2 −.339 (.437)
Brand Specific
Log(Followers) .921∗∗∗ (.001)
Posts −.287∗∗∗ (.003)
Text
Text Sentiment Positive .004∗∗ (.002)
Text Sentiment Negative −.003 (.003)
Hashtags .024∗∗∗ (.0004)
Temporal Controls
Afternoon −.011∗ (.006)
Evening .022∗∗∗ (.006)
Night .074∗∗∗ (.007)
Weekend .047∗∗∗ (.005)
Spring −.217∗∗∗ (.007)
Summer −.230∗∗∗ (.005)
Fall −.197∗∗∗ (.005)
Photography Controls
Diagonal Dominance −.016∗∗ (.008)
Rule of Thirds .116∗∗∗ (.018)
Vertical Physical Dominance .018 (.014)
Horizontal Physical Dominance .006 (.016)
Horizontal Color Balance −.415∗∗∗ (.027)
Vertical Color Balance .108∗∗∗ (.033)
FG Size Difference .077∗∗∗ (.007)
FG Color Difference .115∗∗∗ (.012)
FG Texture Difference −.010 (.020)
Saturation .002 (.024)
Contrast −.008 (.018)
Clarity −.123∗∗∗ (.010)
Warmth −.086∗∗∗ (.009)
Content Controls - ANP
Crazy car .043∗∗∗ (.015)
classic castle .053∗∗∗ (.013)
Hot girls .052∗∗∗ (.017)
Outdoor party .013 (.021)
Busy office −.042∗ (.023)
Amazing food −.061∗∗∗ (.020)
Hot cup −.038∗∗ (.018)
Cute animals .021 (.023)
Outdoor wedding .042∗∗∗ (.014)
Favorite team −.034 (.032)
Art studio −.005 (.031)
Bakery/shop −.045∗∗∗ (.012)
Content Controls - Places365
Beach .108∗∗∗ (.019)
Clean room −.088∗∗∗ (.010)
Coffee shop −.024 (.018)
Desert/sand .047∗∗ (.018)
Museum indoor .051∗∗∗ (.014)
Nursery −.047∗∗∗ (.014)
Ocean .106∗∗∗ (.026)
Playroom .091∗∗∗ (.012)
Content Controls - Face VGG16
Face −.055∗∗∗ (.005)
(Intercept) −2.401∗∗∗ (.099)
Observations 147,963
Adjusted R-Squared .453
Overdispersion θ 1.96∗∗∗ (.007)

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Appendix D. Web Appendix - Instagram

Instagram allows users to generate content and share this content with

other users across the platform. Unlike text-based or mixed media social me-

dia platforms, Instagram is considered a visual social media platform meaning

that its main focus is visual content - imagery in particular. A user shares

(posts) an image with a short description (caption) on their Instagram page.

Users can choose to ‘follow’ other users, in which case new photos from a

user they follow will automatically show up in their feed. Typically, users

follow dozens, hundreds, or even thousands of other users or brands that are

(actively) generating content. The followers can show appreciation of the

content posted by ‘liking’ it, which they do by clicking on a heart-shaped

icon, or double tapping on the image. Users can also comment on other

users’ photos.

After taking a photo, a user has several ways to quickly edit it before

sharing it on Instagram. One of Instagram’s most popular features is the

possibility of adding a filter to a photo. These filters add a certain visual effect

to the photo, for example turning the photo into a black and white photo

or intensifying shadows and brightening highlights. On Quora13, Instagram

CEO and founder Kevin Systrom describes filters as follows: ”Our filters

are a combination of effects - curve profiles, blending modes, color hues, etc.

In fact, I usually create them in Photoshop before creating the algorithms

to do them on the phone”. Instagram allows users to take, edit and share

13Retrieved from: https://www.quora.com/What-do-the-different-image-filters-on-

Path-Instagram-Oink-etc-actually-do/answer/Kevin-Systrom
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a photo within seconds. We perceive that these filters will be relevant for

manipulating the feature complexity of the imagery.

Additionally, users can make use of hashtags (a topic marker starting

with a ‘#’ character, such as #selfie or #nature) in their description of the

photo which allows the specific posts to be found by other users and brands

can use it to target a specific audience. This is similar to the way hashtags

are used on Twitter to mark the topic of a tweet. Additionally, users can tag

other users in the image or in the description, which means that they will

get a notification that they have been tagged in that post. For example, if

an image is a group shot with multiple people in it, it is common practice to

tag those people who have an Instagram account. This means that the post

is now not only visible on the page of the user that generated the posts, but

it is also visible on the page of the tagged users.

Instagram is one of today’s most popular social media platforms with over

800 million active monthly users (Mathison, 2018). Its users have shared over

50 billion photos to date and share an average of 95 million photos and videos

per day. They “like” about 4.2 billion posts each day. It has also shown to

be a particularly interesting platform for brands. In 2016, almost 50% of US

brands were using Instagram for social media marketing and this has risen

to over 70% recently (Osman, 2018). A social media study conducted by

Forrester (Elliott, 2014) reviewed how the top 50 global brands market on

social networks. Forrester evaluated 11.8 million user interactions on 2,489

posts made by 249 branded profiles and collected data on how many top

brands use each social network, how many followers they’ve collected, how

often they post, and how often users interact with their posts. They found
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that the average number of Instagram followers for a top brand in 2016 was

already over 1 million. The next section describes the Instagram dataset we

have created.
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Appendix E. Web Appendix - Convolutional Neural Networks and

Content Controls

Low Medium High

Figure E.6: Visualization of Mask RCNN object detection for low, medium and high

number of objects.

In the last decade, researchers in computer science have developed the

ability to automatically extract conceptual information from a large number

of images. This information has shown to be particularly useful in a number

of research fields. Recently, we have also seen an adoption of these methods

for marketing research, especially in online settings where image data is often

used. In this paper, we use CNNs to extract the object complexity and

the content control variables. CNNs are powerful deep learning networks

developed primarily for image recognition. CNNs have been successful in

identifying objects in images, such as faces, humans and animals, or scenes

such as park, coffee shop, beach etc. Convolutions are effective at extracting

image features, because they are a type of filter that is applied multiple

times to different parts of the image. The CNN uses only a small set of
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parameters that need to be estimated to detect similar features in multiple

locations in an image. Nowadays, we can use large datasets with labeled

images and the increasingly cheap nature of computer power to learn the

parameters in convolutions at a large scale. The CNNs have several types of

layers (mathematical manipulations) to extract different types of information

from an image. The CNN architecture builds up a large amount and variety

of information from the image and combines all of these different types of

information to enable identification of complex concepts in the image. By

scanning over a large number of pre-labeled images and adjusting weights

the CNN can “learn” how to recognize the labeled information in the images

of the training set. We use four different pre-trained CNNs to extract our

content information. Three of these are pre-trained classifiers that classify

an image as belonging to a certain class, the fourth is an object localization

classification. Instead of classyfing an image as a whole, it first determines

regions of interest that are then classified to be of a certain class. First, we

will explain the mask RCNN architecture and how we use it to extract the

number of objects. Then, we’ll discuss the three pre-trained image classifiers

that we use to create our binary content indicators.

More recently, object localization (i.e. detecting and localizing multiple

objects within an image, instead of classifying an entire image) has become

more accurate. He et al. (2017) proposed Mask R-CNN, using Region-Based

CNNs Girshick et al. (2014) to classify regions of interests within images, to

accurately detect objects within an image. In (Nagle and Lavie, 2020), the

authors show that this is in fact the most effective individual predictor of

visual complexity. Using a pre-trained Mask R-CNN, trained to recognize 81
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different types of objects, we are able to count the total number of (unique)

objects within an image. Figure Appendix E, visualized the output of object

detection using Mask RCNN. We use the latest MaskRCNN architecture,

Inception ResNet V2 Mask RCNN trained on the coco dataset. As shown,

it does not alwasys detect all objects, nor does it classify them perfectly.

However, our validation experiment does show that it accurately reflects the

perception when we simply count the number of detection boxes from the

classifier. In future research, once these models become faster and more

accurate, we expect that the object complexity score will be more accurate.

In addition, one could use the distribution of the detected objects for the

irregularity of object arrangement and asymmetry of object arrangement as

well.

For the constuction of the content indicators, we use three CNNs trained

to recognize, scenes, adjective-noun pairs and faces. For the places/scenes

classification we use a deep neural structure trained on previous images of dif-

ferent locations, called the Places Database (Zhou et al., 2018). The Places

Database consists of 10 million scene photographs, all labeled with scene

semantic categories. It comprises a diverse list of types of environment en-

countered in the world. For instance, scenes include: Lobby, Jacuzzi, Dorm

Room, and Building Facade. The deep learning model accurately identifies

365 scene categories depicted in images. Similar to object detection, the

pre-trained CNN returns a probability score for each of the 365 scene cate-

gories in the image. The final result is a distributional representation of the

identification of scenes for every hotel image in our dataset. We detected

adjective-noun pairs using the MVSO model (Borth et al., 2013). The model
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accurately identifies 1200 adjective-noun pairs. The binary indicators for

both these variables were constructed by simply selecting the top 10 most

frequent classes from both of these pre-trained CNNs applied to our dataset.

From there, an indicator would indicate 1 if the image was classified as being

one of these top 10 most frequent scenes or adjective-noun pairs. Lastly, for

the face detection, we used a CNN pre-trained to recognize faces (Parkhi

et al., 2015). In case the model detects a face in the image, we assign a 1 to

the face indicator.
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Appendix F. Web Appendix - Alternative Complexity

These 11 measures evaluate visual complexity measures proposed in Corchs

et al. (2016). The measures found in other papers, are either highly similar

or create a combination of filters and compression. We are already dealing

with compressed imagery, so we can only use the file size as a measure for

compression. They find a correlation of r=.81 with perceived complexity

of participants from a linear combination of these measures. M7 and M9

correspond to the edge density and color as we use them. M5 and M8 are

visual complexity controls that we incorporate in our paper. M11 was not

used, because this is closely related to the photography controls. Finally, M6

is what both the other benchmark papers (Pieters et al., 2010; Shin et al.,

2019) use as their measure for the feature complexity.

• M1: Contrast; it measures the intensity contrast between a pixel and

its neighbors over the whole image.

• M2: Correlation; it measures how correlated a pixel is to its neighbors

over the whole image.

• M3:Energy; it is the sum of squared elements in the GLCM.

• M4:Homogeneity, it measures the closeness of the distribution of ele-

ments in the GLCM with respect to the GLCM diagonal.

• M5:Frequency Factor, it is the ratio between the frequency correspond-

ing to the 99% of the image energy and the Nyquist frequency (highest

possible frequency in an image).

• M6:Compression Ratio, which is the JPEG file size.
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• M7: Edge Density, same as the edge density measure in our study.

• M8: Number of regions, computed with the superpixel-based fast fuzzy

C-means image segmenation as proposed by Lei et al. (2018) (more

advanced method than proposed in (Corchs et al., 2016).

• M9: Colorfulness; it consists in a linear combination of the mean and

standard deviation of the pixel cloud in the color plane (Artese et al.,

2014).

• M10:Number of Colors; measures the number of distinct color in the

RGB image.

• M11:Color Harmony, based on the perceived harmony of color com-

binations. It is composed of three parts: the chromatic effect, the

luminance effect, and the hue effect. The image is split up into 10 seg-

ments, based on (Lei et al., 2018), each with their average color. We

then take the minimum of the harmony of each segment compared to

all others.

Appendix G. Web Appendix - Photography Attributes

As control variables for our study we compute the photography attributes

used in Zhang et al. (2017) and Zhang and Luo (2018). The attributes are

split up into three main categories: Color, Composition and Figure-Ground

Relationship.
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Appendix G.1. Composition

First, we compute a saliency map of the image, assigning a saliency score

to every pixel in the image. Then, we use the superpixel algorithm to segment

the image into 10 main regions.14 The salient region in the image is the

segment with the highest average saliency score.

• Diagonal dominance We calculate the distance between the center of

the salient region to each of the two diagonals of a photo. The diagonal

dominance is the negative of the minimum of these two distances.

• Rule of thirds We calculate the distance from the center of the salient

region to each of the four intersections of the two horizontal lines and

the two vertical lines that evenly divide the photo into nine parts. The

rule of thirds score is the negative of the minimum of these distances.

• Physical visual balance We calculated two physical visaul balance

measures: vertical and horizontal. We calculated the weighted saliency

centroid from a weighted average centroid. We weigh the centroid

of each of the 10 segments by the average saliency score to find the

weighted center of the image. The vertical (horizontal) physical visual

balance is than the distance from that center to the horizontal (vertical)

line splitting the image into two halves.

• Color visual balance We calculated two scores for color visual bal-

ance: vertical and horizontal color visual balances. Each pixel is com-

14we chose to do the segmentation like (Zhang and Luo, 2018) to match previous work,

instead of the superpixel-based fast fcm used above
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pared to its vertical (horizontal) counterpart. The score is the average

euclidean distance of each pixel pair.

Appendix G.2. Figure-ground relationship

Figure refers to the foreground, and ground refers to the background,

of a photo. For the first three figureground relationship features, we first

use the Grabcut algorithm (Rother et al., 2004) to identify the figure and

background of each photo. In the following, we explain how we extract each

attribute for figureground relationship.

• Size difference We take the difference between the number of pixels of

the figure and that of the background, normalized by the total number

of pixels of the photo.

• Color difference We first calculate the average RGB vectors for fig-

ure and ground. Then the color difference is the Euclidean distance

between the two RGB vectors.

• Texture difference Difference in edge density between the figure and

the ground.

Appendix G.3. Color

• Brightness is the average of the value dimension of HSV across pixels

(Datta et al. 2006).

• Saturation is the average of saturation cross pixels.

• Contrast of brightness was calculated as the standard deviation of

the value dimension of HSV cross pixels.
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• Clarity A pixel is defined to be of enough clarity when the Value of

the HSV is more than .7.

• Warm hue the warm hue level for the photo is the proportion of warm

hue (i.e., red, orange, yellow) pixels in a photo.

• Colorfulness - We already have this measure as part of our visual

complexity framework.
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Appendix H. Web Appendix - Validation Experiment - Additional

Analyis

Table H.12: Agreement percentages when sampling from different ranges of the distribu-

tion: Low, medium and high. In bold are the highest percentages per row.

Type Low - Medium Medium - High Low - High
Color Complexity (Majority Vote) 82% 72% 89%
Color Complexity (Unanimous) 96% 91% 99%
Luminance Entropy (Majority Vote) 56% 63% 61%
Luminance Entropy (Unanimous) 83% 67% 69%
Edge Density (Majority Vote) 83% 61% 86%
Edge Density (Unanimous) 83% 63% 92%
Unique Objects Count (Majority Vote) 67% 71% 73%
Unique Objects Count (Unanimous) 86% 87% 91%
Irregularity of Object Arrangement (Majority Vote) 62% 56% 72%
Irregularity of Object Arrangement (Unanimous) 79% 75% 87%
Assymmetry of Object Arrangement (Majority Vote) 47% 66% 68%
Assymmetry of Object Arrangement (Unanimous) 64% 73% 94%

In Table H.12 we present the agreement percentages for images pairs

where we sampled from different ranges of the distribution, which is relevant

for our study as we are investigating non-linear relationships with the liking.

We observe that for 5 out of 6 measures the agreement percentage was highest

for the low vs. high comparison. This means that when there is a larger

difference between the automated complexity scores it is generally easier

to judge by the participants. For the luminance entropy, we observe that

it was harder for participants to distinguish between images sampled from

low and medium ranges. In addition, we observe that for the asymmetry

of the object arrangement, the low and medium range images were hard to

distinguish, whereas the low vs. high, and medium vs. high resulted in 68%
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agreement, increasing to 94% in case of unanimous vote. For the rest of

the measures the agreement percentages are to be expected, with the highest

scores for low vs. high and still large percentage even when comparing the low

and high range images to medium range images. Overall, we can conclude

that the measures accurately reflect the perceived complexity, and that a

bigger difference between the measures makes it easier to distinguish between

images. Only low and medium measures asymmetry of object arrangement

are not distinguishable, which needs to be taken into consideration in the

analysis.
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Appendix I. Web Appendix - Validation Experiment Set Up
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Appendix J. Web Appendix - Brands

Table J.13: Brand list

Brand Industry

A&W Restaurants Foodservice

Abbott Pharmaceuticals & life sciences

ABC Media

Abercrombie & Fitch Fashion & Personal Care

Abercrombie kids Fashion & Personal Care

Accenture Professional services

Ace Retail/e-tail

Advance Auto Parts Retail/e-tail

Advanced Micro Devices Technology - General

Affinia Sports, Leisure & travel

Aflac Financial services & insurance companies

Air Jordan Fashion & Personal Care

Airbnb Sports, Leisure & travel

Airwick Personal and household appliances

Alaska Airlines Sports, Leisure & travel

Alcoa Industrial products & services

Alex and Ani Retail/e-tail

Alexander Wang Fashion & Personal Care

Alexion Pharmaceuticals Pharmaceuticals & life sciences

Allen Edmonds Retail/e-tail
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Allergan Pharmaceuticals & life sciences

Allstate Financial services & insurance companies

Altera Telecom and IT

Amazon.com Retail/e-tail

American Apparel Retail/e-tail

American Express Financial services & insurance companies

American Giant Fashion & Personal Care

American Greetings Retail/e-tail

ampm Mini Market Foodservice

Andaz Sports, Leisure & travel

Anki Sports, Leisure & travel

Anna Sui Fashion & Personal Care

Anthropologie Retail/e-tail

Anyperk Professional services

Anytime Fitness Sports, Leisure & travel

AOL Media

Applebee’s Foodservice

Arby’s Foodservice

Arm & Hammer Personal and household appliances

Armor Holdings Professional services

Assassin’s Creed Media

AT&T Telecom and IT

Athenahealth Professional services

Athleta Fashion & Personal Care

Autodesk Telecom and IT
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AutoNation Automotive

Autozone Retail/e-tail

Avanade Telecom and IT

Avaya Telecom and IT

AVEDA Fashion & Personal Care

Badgley Mischka Fashion & Personal Care

Baldor Electirc Industrial products & services

Ball Corporation Industrial products & services

Banana Boat Fashion & Personal Care

Banana Republic Retail/e-tail

Bank of America Financial services & insurance companies

Barbie Toys industry

Barneys New York Retail/e-tail

Baskin-Robbins Foodservice

Bass Pro Shops Retail/e-tail

Bath & Body Works Retail/e-tail

Bed Bath & Beyond Retail/e-tail

Best Western Sports, Leisure & travel

Betty Crocker Media

Beverly Hills Polo Club Fashion & Personal Care

BFGoodrich Tire & Rubber

Bill & Melinda Gates Foundation Non profit organisations

Bing Telecom and IT

Black + Decker Personal and household appliances

Blendtec Personal and household appliances
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Bloomberg Professional services

Blue Teach Education

Bobbi Brown Fashion & Personal Care

Bojangles’ Restaurants Inc. Foodservice

Bose Technology - General

Boston Market Foodservice

Briggs & Stratton Industrial products & services

Bright Horizons Education

Brooks Personal and household appliances

Brooks Brothers Retail/e-tail

Buckle Retail/e-tail

Buffalo Wild Wings Foodservice

Buick Automotive

Build-A-Bear Workshop Retail/e-tail

Bulova Fashion & Personal Care

Burger King Foodservice

Burton Sports, Leisure & travel

CA Technologies Telecom and IT

Cabela’s Retail/e-tail

Cadillac Automotive

Call of Duty Sports, Leisure & travel

Calvin Klein Fashion & Personal Care

Camden Property Trust Real Estate

Capital One Financial services & insurance companies

Caress Fashion & Personal Care
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Carglass Professional services

Carhartt Fashion & Personal Care

Caribou Coffee Foodservice

Carl’s Jr. Restaurants Foodservice

Carnival Sports, Leisure & travel

Carter’s Fashion & Personal Care

CB Richard Ellis Group Financial services & insurance companies

CB2 Retail/e-tail

CBS Corporation Media

CH2M Construction & construction materials

Champion Fashion & Personal Care

Chevrolet Automotive

CHG Healthcare Services Human resources

Chico’s Retail/e-tail

Chili’s Foodservice

Chipotle Foodservice

Chiquita Agriculture, forestry, fishing

Chrysler Automotive

Chubb Financial services & insurance companies

Chuck E. Cheese Sports, Leisure & travel

Church’s Chicken Foodservice

CiCi pizza Foodservice

CIGNA Corp Pharmaceuticals & life sciences

Cinnabon Foodservice

Circle K Retail/e-tail
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Cisco Telecom and IT

Citibank Financial services & insurance companies

Citrix Telecom and IT

Clarion Sports, Leisure & travel

Clarisonic Fashion & Personal Care

Clean & Clear Fashion & Personal Care

Clinique Fashion & Personal Care

Clorox Personal and household appliances

CNN Media

Coinstar Retail/e-tail

Coldwater Creek Retail/e-tail

Coldwell Banker Real Estate Real Estate

Cole Haan Fashion & Personal Care

Columbia Sportswear Fashion & Personal Care

ComCast Telecom and IT

Comfort Suites Sports, Leisure & travel

Conrad Hotels Sports, Leisure & travel

Convergys Professional services

Cooper Tire Tire & Rubber

Cottonelle Fashion & Personal Care

Coty Fashion & Personal Care

Country Inns & Suites Sports, Leisure & travel

Crabtree & Evelyn Fashion & Personal Care

Craftsman Retail/e-tail

Crate and Barrel Retail/e-tail
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Crayola Personal and household appliances

Crocs Fashion & Personal Care

Crowne Plaza Hotels & Resorts Sports, Leisure & travel

CSX Sports, Leisure & travel

Culver’s Franchising System Foodservice

Cunard Sports, Leisure & travel

CustomInk Retail/e-tail

Cyanogen Telecom and IT

David Weekley Homes Real Estate

David Yurman Fashion & Personal Care

Dean & Deluca Retail/e-tail

Deere & Company Construction & construction materials

Dell Telecom and IT

Delta Air Lines Sports, Leisure & travel

Denny’s Foodservice

Derek Lam Fashion & Personal Care

Dermalogica Fashion & Personal Care

DeWALT Construction & construction materials

Dick’s Sporting Goods Retail/e-tail

Digium Telecom and IT

Discovery Communications Media

Disneyland Sports, Leisure & travel

Dixie Personal and household appliances

DKNY Fashion & Personal Care

DLA Piper Professional services
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Dodge Automotive

Dolby Technology - General

Dollar General Retail/e-tail

Domino’s Foodservice

DoSomething.org Non profit organisations

DoubleTree Sports, Leisure & travel

Dreamworks Animation Media

Dress Barn Retail/e-tail

Duck Tape Personal and household appliances

Dun & Bradstreet Telecom and IT

Dunkin Donuts Foodservice

Earth Friendly Products Personal and household appliances

Earthbound Farm Agriculture, forestry, fishing

Eastern Mountain Sports Retail/e-tail

Eastman Kodak Industrial products & services

Eddie Bauer Fashion & Personal Care

Edelman Professional services

Electronic Arts Media

Elie Tahari Fashion & Personal Care

Elizabeth Arden Fashion & Personal Care

Embassy Suites Sports, Leisure & travel

Energizer Personal and household appliances

Esprit Retail/e-tail

Esri Telecom and IT

Essie Fashion & Personal Care
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Esso Energy & chemical

Este Lauder Fashion & Personal Care

Ethan Allen Personal and household appliances

Expedia Sports, Leisure & travel

Express Employment Professionals Human resources

Fairmont Hotels Sports, Leisure & travel

Family Dollar Retail/e-tail

Fastenal Industrial products & services

FastSigns Industrial products & services

Febreze Personal and household appliances

Firehouse Subs Foodservice

Firestone Tire & Rubber

Fitbit Personal and household appliances

Flickr Telecom and IT

Food Network Media

Forbes Media

Ford Automotive

Forever 21 Retail/e-tail

Foursquare Telecom and IT

FOX news Media

Free People Retail/e-tail

Fresh Fashion & Personal Care

GAP Fashion & Personal Care

Garmin Technology - General

Gartner Professional services
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GE Appliances Personal and household appliances

Geico Financial services & insurance companies

Genentech Pharmaceuticals & life sciences

General Assembly Education

General Tire Tire & Rubber

Gensler Professional services

Georgia-Pacific Industrial products & services

Gibson Guitar Personal and household appliances

Gilt Groupe Retail/e-tail

Girls Scouts of the USA Non profit organisations

Gmail Telecom and IT

GMC Automotive

GoDaddy.com Telecom and IT

Goddard Systems Education

Gold’s Gym Sports, Leisure & travel

Goodyear Tire Tire & Rubber

GoPro Technology - General

Great Clips Fashion & Personal Care

Groupon Professional services

Gymboree Retail/e-tail

H.E.B. Retail/e-tail

Hallmark Retail/e-tail

Hampton by Hilton Sports, Leisure & travel

Hanes Retail/e-tail

Hardee’s Foodservice
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Harley-Davidson Automotive

Harry & David Retail/e-tail

Harry Winston Fashion & Personal Care

Hartford Financial Services Financial services & insurance companies

Harvard University Education

Hasbro Toys industry

Hautelook Retail/e-tail

Hayneedle Retail/e-tail

HBO Telecom and IT

Herbal Essences Fashion & Personal Care

Hertz Sports, Leisure & travel

Hills Petfood & Care

Hilton Hotels & Resorts Sports, Leisure & travel

Hilton Worldwide Sports, Leisure & travel

Holiday Inn Sports, Leisure & travel

Holiday Inn Express Sports, Leisure & travel

Home Instead Senior Care Professional services

Honeywell International Consortia & organizations

Houzz Professional services

HSN Media

HubSpot Professional services

Hulu Media

Humana Financial services & insurance companies

Hyatt Hotels & Resorts Sports, Leisure & travel

Hyatt Regency Sports, Leisure & travel
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IBM Telecom and IT

Ideo Professional services

Iman Cosmetics Fashion & Personal Care

Inc. Magazine Media

Intel Telecom and IT

Intercontinental Hotels Sports, Leisure & travel

Intuit Telecom and IT

IZOD Fashion & Personal Care

Jack In The Box Foodservice

James Corner Field Operations Professional services

Jawbone Personal and household appliances

Jazzercise Sports, Leisure & travel

Jeep Automotive

Jenn-Air Personal and household appliances

Jersey Mike’s Subs Foodservice

JetBlue Sports, Leisure & travel

Jimmy John’s gourmet Sandwich Shops Foodservice

Jo Malone Fashion & Personal Care

Jockey Fashion & Personal Care

John Varvatos Fashion & Personal Care

Johnson’s baby Fashion & Personal Care

Johnston & Murphy Retail/e-tail

Joie De Vivre Sports, Leisure & travel

JW Marriott Sports, Leisure & travel

K-Swiss Fashion & Personal Care
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KAYAK Sports, Leisure & travel

KBR Construction & construction materials

Keen Fashion & Personal Care

Kenmore Personal and household appliances

Kentucky Fried Chicken Foodservice

Keurig Personal and household appliances

Kiehl’s Fashion & Personal Care

Kimley-Horn & Associates Professional services

Kimpton Hotels & Restaurants Sports, Leisure & travel

Kindle Personal and household appliances

Kirkland Signature Food & Beverage

KitchenAid Personal and household appliances

Kleenex Fashion & Personal Care

Kmart Retail/e-tail

Kohler Industrial products & services

Kroger Retail/e-tail

L.L. Bean Retail/e-tail

La Prairie Fashion & Personal Care

La-Z-Boy Retail/e-tail

Lan Sports, Leisure & travel

Lands’ End Retail/e-tail

Laura Mercier Fashion & Personal Care

Layne Christensen Construction & construction materials

LegalZoom Professional services

Lennar Construction & construction materials
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Leo Burnett Professional services

Levi’s Fashion & Personal Care

LifeBridge Health Non profit organisations

LinkedIn Telecom and IT

Listerine Fashion & Personal Care

Lockheed Martin Technology - General

Long John Silver Restaurants Foodservice

Lowe’s Retail/e-tail

Lucky Brand Fashion & Personal Care

Lucy Retail/e-tail

Lunds & Byerly’s Retail/e-tail

Lycra Fashion & Personal Care

Mac Tools Construction & construction materials

Madewell Retail/e-tail

Marathon Oil Energy & chemical

Marmot Fashion & Personal Care

Marriott International Sports, Leisure & travel

Marsh & McLennan Financial services & insurance companies

Mary Kay Fashion & Personal Care

Massachusetts Mutual Life Insurance Financial services & insurance companies

Massage Envy Professional services

Matco Tools Industrial products & services

Mathnasium Learning Centers Education

Mayo Clinic Non profit organisations

McDonald’s Foodservice
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McKesson Pharmaceuticals & life sciences

MD Anderson Cancer Center Non profit organisations

Medtronic Technology - General

Meijer Retail/e-tail

Meridian Health Non profit organisations

Merle Norman Fashion & Personal Care

Merrell Fashion & Personal Care

Merry Maids Professional services

Method Personal and household appliances

Methodist Hospital System Non profit organisations

MetroPCS Telecom and IT

MGA Entertainment Toys industry

MGM Resorts International Sports, Leisure & travel

Michael Kors Fashion & Personal Care

Microsoft Telecom and IT

Microsoft Advertising Telecom and IT

Microsoft Office Telecom and IT

Microsoft Studios Sports, Leisure & travel

Miller Industries Automotive

Milliken Industrial products & services

Minuteman Press Professional services

Mobil Energy & chemical

Moe’s Southwest Grill Foodservice

Monsanto Agriculture, forestry, fishing

Morgan Stanley Financial services & insurance companies
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Motorola Telecom and IT

Mountain Hardwear Retail/e-tail

Mrs Meyer’s Clean Day Personal and household appliances

MTV Media

Murad Fashion & Personal Care

Nair Personal and household appliances

National Geographic Media

National Guard Government & public services

Nautica Fashion & Personal Care

NBA Media

NBC Media

NESN Media

NetApp Technology - General

Netflix Media

Networked Insights Telecom and IT

Neutrogena Fashion & Personal Care

New Balance Fashion & Personal Care

New York Times Media

Newegg Retail/e-tail

Newell Rubbermaid Personal and household appliances

News Corporation Media

NFL Players Sports, Leisure & travel

Northern Trust Financial services & insurance companies

Northrop Grumman Technology - General

Northwestern Mutual Financial services & insurance companies
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Norwegian Cruise Sports, Leisure & travel

NRG Energy Energy & chemical

Nugget Market Retail/e-tail

Nutrisystem Professional services

Nvidia Telecom and IT

NYX Cosmetics Fashion & Personal Care

Oakley Fashion & Personal Care

Office Depot Retail/e-tail

OfficeMax Retail/e-tail

Ogilvy & Mather Professional services

Old Navy Retail/e-tail

Old Spice Fashion & Personal Care

Omnicom Group Professional services

OnBase by Hyland Telecom and IT

ONeill Fashion & Personal Care

OPI Fashion & Personal Care

Oracle Telecom and IT

Orbitz Professional services

Origins Fashion & Personal Care

Overstock.com Retail/e-tail

Owens Corning Industrial products & services

Oxo Personal and household appliances

Palmolive Fashion & Personal Care

Pampers Fashion & Personal Care

Papa John’s Foodservice
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Papa Murphy’s Foodservice

Paramount Media

park inn Sports, Leisure & travel

Patagonia Fashion & Personal Care

Paychex Professional services

Paycom Telecom and IT

Payless ShoeSource Retail/e-tail

PayPal Financial services & insurance companies

PBS Kids Media

PBTeen Retail/e-tail

Pedigree Petfood & Care

Perini Construction & construction materials

Perricone MD Fashion & Personal Care

PG&E Energy & chemical

Philosophy Fashion & Personal Care

Physicians Formula Fashion & Personal Care

Pier 1 Imports Retail/e-tail

Pillsbury Media

Pink Ribbon Non profit organisations

Pixar Media

Pizza Hut Foodservice

Planet Fitness Sports, Leisure & travel

Plato’s Closet Retail/e-tail

Pond’s Fashion & Personal Care

Pottery Barn Retail/e-tail
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Pottery Barn Kids Retail/e-tail

Power Home Remodeling Group Professional services

Princess Cruises Sports, Leisure & travel

Proactiv Fashion & Personal Care

Proenza Schouler Fashion & Personal Care

Progressive Financial services & insurance companies

PuroClean Professional services

Qtips Personal and household appliances

Qualcomm Industrial products & services

Quicken Loans Financial services & insurance companies

Quiznos Sub Foodservice

RadioShack Retail/e-tail

Radisson Hotels Worldwide Sports, Leisure & travel

rag & bone Fashion & Personal Care

Ralph Lauren Fashion & Personal Care

Ram Automotive

Ray-Ban Fashion & Personal Care

Raytheon Technology - General

Razor Personal and household appliances

Razorfish Professional services

RE/Max Real Estate

Reader’s Digest Media

Redbox Retail/e-tail

Reef Fashion & Personal Care

REI Retail/e-tail
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Remington Personal and household appliances

Renaissance Hotels Sports, Leisure & travel

Restoration Hardware Retail/e-tail

Revlon Fashion & Personal Care

Revolution Foods Professional services

Reynolds Personal and household appliances

Rite Aid Retail/e-tail

Ritz-Carlton Sports, Leisure & travel

Road & Track Media

Rockport Fashion & Personal Care

Rockstar Games Sports, Leisure & travel

Rockwell Collins Technology - General

Rosewood Hotels & Resorts Sports, Leisure & travel

ROSS Stores Retail/e-tail

Royal Caribbean Cruises Sports, Leisure & travel

Russell Fashion & Personal Care

Salesforce.com Telecom and IT

SanDisk Corporation Personal and household appliances

Sassoon Fashion & Personal Care

Saturn Automotive

Saucony Fashion & Personal Care

Schecter Music

Scholastic.com Education

Scientific American Media

Scotch-Brite Personal and household appliances

104



Scripps Health Non profit organisations

Seagate Technology Technology - General

Sears Retail/e-tail

Seventh Generation Personal and household appliances

Sherwin-Williams Construction & construction materials

Sigma-Aldrich Technology - General

Signarama Professional services

Skechers Fashion & Personal Care

Skinceuticals Fashion & Personal Care

Skype Telecom and IT

Smashbox Fashion & Personal Care

Smith International Construction & construction materials

Smoothie King Foodservice

Snap Fitness Sports, Leisure & travel

Snap-on Tools Personal and household appliances

SolarCity Construction & construction materials

Sonic Drive In Restaurant Foodservice

Sonos Personal and household appliances

Sony Music Entertainment Music

Sony Pictures Media

SoulCycle Sports, Leisure & travel

SpaceX Technology - General

Spiegel Retail/e-tail

Sport Clips Fashion & Personal Care

Sportvision Media
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Sprint Telecom and IT

Square Telecom and IT

St. jude Children’s Research Hospital Non profit organisations

St. Regis Hotels Sports, Leisure & travel

Starbucks Foodservice

State Farm Financial services & insurance companies

Stayfree Fashion & Personal Care

Steve Madden Fashion & Personal Care

Stew Leonard’s Retail/e-tail

StriVectin Fashion & Personal Care

Subway Food & Beverage

Supercuts Fashion & Personal Care

Sybase Telecom and IT

Sylvan Learning Education

Symantec Telecom and IT

System4 Professional services

Taco Bell Foodservice

Talbots Retail/e-tail

Target Retail/e-tail

TE Connectivity Technology - General

Teach For America Education

TED Media

TEKsystems Human resources

Tenaris Energy & chemical

TEVA Fashion & Personal Care
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Texas Instruments Technology - General

Texas Roadhouse Foodservice

The Boston Consulting Group Professional services

The Home Depot Retail/e-tail

The North Face Retail/e-tail

The UPS Store Logistics & Mail

The Washington Post Media

Theory Fashion & Personal Care

Thermo Fisher Scientific Technology - General

Ticketmaster Professional services

TLC Media

Tom Ford Fashion & Personal Care

Tom’s of Maine Fashion & Personal Care

Tommy Bahama Fashion & Personal Care

Tommy Hilfiger Fashion & Personal Care

Topps Sports, Leisure & travel

Tory Burch Fashion & Personal Care

Tractor Supply Company Retail/e-tail

Travelodge Sports, Leisure & travel

TripAdvisor Sports, Leisure & travel

Trish McEvoy Fashion & Personal Care

True Religion Fashion & Personal Care

True Value Retail/e-tail

TRW Automotive Holdings Industrial products & services

Tupperware Personal and household appliances
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Tylenol Pharmaceuticals & life sciences

U by Kotex Fashion & Personal Care

U.S. Bank Financial services & insurance companies

U.S. Polo Assn. Fashion & Personal Care

UGG Australia Fashion & Personal Care

Ultimate Software Telecom and IT

Under Armour Fashion & Personal Care

Unicef Non profit organisations

Union Pasific Railroad Sports, Leisure & travel

United Continental Holdings Sports, Leisure & travel

United Country Real Estate Real Estate

Universal Music Media

Universal Pictures Media

UPS Logistics & Mail

US Marine Corps Government & public services

USAA Financial services & insurance companies

Valvoline Energy & chemical

Vanderbilt University Education

Vanity Fair Personal and household appliances

Vaseline Fashion & Personal Care

Vector Technology - General

Verizon Telecom and IT

Veterans United Home Loans Financial services & insurance companies

VH1 Media

Viking Personal and household appliances
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Vince Camuto Fashion & Personal Care

Vineyard Vines Retail/e-tail

Visiting Angels Professional services

Vizio Personal and household appliances

VMware Telecom and IT

Vogue Media

W Hotels Sports, Leisure & travel

Wachovia Financial services & insurance companies

Waffle House Foodservice

Waldorf Astoria Sports, Leisure & travel

Walgreens Retail/e-tail

WaMu Financial services & insurance companies

Warner Bros Media

Waters Technology - General

Weather Channel Media

WebMD Health Media

WeightWatchers Professional services

Wendy’s Foodservice

West Elm Retail/e-tail

Western Union Financial services & insurance companies

WeWork Professional services

Whataburger Foodservice

Whirlpool Personal and household appliances

Whiskas Petfood & Care

White House — Black Market Retail/e-tail
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Wikipedia Media

Williams-Sonoma Retail/e-tail

Windows Telecom and IT

Windstar Cruises Sports, Leisure & travel

Wingstop Restaurant Foodservice

Workday Telecom and IT

World Bank Group Financial services & insurance companies

Wrangler Fashion & Personal Care

Wyndham Hotels and Resorts Sports, Leisure & travel

Xbox Personal and household appliances

Xcel Energy Energy & chemical

Yahoo! Telecom and IT

Yelp Telecom and IT

YouTube Media

Zales Retail/e-tail

Zaxby’s Franchising Foodservice
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Simplicity is not Key: Understanding Firm-Generated Social Media 

Images and Consumer Liking - Highlights  

1. This research presents automated measurements for capturing the visual complexity of 

social media imagery. 

2. The relationship between visual complexity and consumer liking on social media is not 

linear. 

3. Visual complexity is not a linear, monolithic construct and can therefore not be captured by 

a single additive measure.  

4. The relationship between visual complexity and consumer liking on social media is best 

interpreted using its individual components. 

5. Image analytics at scale can offer key insights in understanding the diffusion of online visual 

content. 

Highlights (for review)


